タグ「証明」の検索結果

113ページ目:全1924問中1121問~1130問を表示)
横浜市立大学 公立 横浜市立大学 2013年 第2問
$n$個のボールと,$1$から$n$までの番号がふられた$n$個の空の箱がある.また,$1$から$n$の番号が書かれた$n$枚のカードが袋の中に入っている.いま,以下の手順に従いボールを箱の中に入れていくことを考える.

手順$1$ \quad 袋からカードを$1$枚無作為に取り出して,手順$2$に進む.
手順$2$ \quad 手順$1$で取り出したカードに書かれている番号の箱が,
\begin{itemize}
空ならば,そこにボールを$1$つ入れて,手順$3$へ進む.
空でなければ,カードを袋に戻さず手元に置き,手順$1$に戻る.
\end{itemize}
手順$3$ \quad 手元のすべてのカードを袋に戻す.この時点で,
\begin{itemize}
すべての箱にボールが入っていれば終了する.
空の箱が$1$つでもあれば,手順$1$に戻る.
\end{itemize}

また,$1 \leqq k \leqq n$を満たす自然数$k$について,$k-1$個目のボールを箱に入れ終わった状態(ただし,$k=1$のときは,はじめの状態とする)の後に,
\begin{itemize}
次のボール,すなわち$k$個目のボールを箱に入れるまでにちょうど$i$枚のカードを袋から取り出す確率を$P_k(i)$とし,
$i$枚のカードを袋から取り出してもまだ次のボールを箱に入れることができない確率を$Q_k(i)$とする.ただし,$Q_k(0)=1$とする.
\end{itemize}
このとき,以下の問いに答えよ.

(1)$n=4$のとき$P_3(1)$,$P_3(2)$,$Q_3(2)$をそれぞれ求めよ.
(2)$Q_k(i)$を$P_k(i+1)$,$P_k(i+2)$,$\cdots$,$P_k(k)$を用いて表せ.ただし,$0 \leqq i \leqq k-1$とする.
(3)$k-1$個目のボールを箱に入れてから$k$個目のボールを箱に入れるまでに袋から取り出すカードの枚数の期待値$E_k$は$Q_k(0)+Q_k(1)+\cdots +Q_k(k-1)$であることを示せ.
(4)不等式
\[ E_k \leqq \frac{n}{n-k+1} \]
が成り立つことを示せ.
(5)不等式
\[ E_1+E_2+\cdots +E_n \leqq n+n \log n \]
が成り立つことを示せ.
北九州市立大学 公立 北九州市立大学 2013年 第1問
以下の問いの空欄$[ア]$~$[コ]$に入れるのに適する数値,式を解答箇所に記せ.証明や説明は必要としない.

(1)$\sqrt{6+4 \sqrt{2}}$の小数部分を$a$とすると,$a=[ア]$,$\displaystyle a^2-\frac{1}{a^2}=[イ]$となる.
(2)$2$次関数$y=3x^2-6x+a+6 (0 \leqq x \leqq 3)$の最小値が$5$となるような定数$a$の値は$[ウ]$である.また,このとき最大値は$[エ]$である.
(3)$0,\ 1,\ 2,\ 3,\ 4,\ 5$の$6$個の数字から異なる$3$個の数字を取り出して並べ,$3$桁の整数を作るとき,整数は全部で$[オ]$個,偶数は全部で$[カ]$個となる.
(4)円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AB}=5$,$\mathrm{BC}=\mathrm{CD}=7$,$\mathrm{DA}=3$とする.$\angle \mathrm{BAD}=\theta$とするとき,$\cos \theta$は$[キ]$,四角形$\mathrm{ABCD}$の面積は$[ク]$である.
(5)赤いカード$4$枚,青いカード$3$枚,合計$7$枚のカードがある.この中から$2$枚のカードを同時に取り出すとき,$2$枚とも赤いカードとなる確率は$[ケ]$である.また,赤いカードを$1$点,青いカードを$5$点とするとき,取り出した$2$枚のカードの合計点の期待値は$[コ]$である.
北九州市立大学 公立 北九州市立大学 2013年 第4問
行列$A=\left( \begin{array}{cc}
3 & 1 \\
1 & 2
\end{array} \right)$について,以下の問いに答えよ.ただし,$E$と$O$はそれぞれ$2$次の単位行列と零行列である.答えを導く過程も示すこと.

(1)行列$A$に対して,等式$A^2-5A+5E=O$が成り立つことを示せ.
(2)行列$B$について,$B=A^4-3A^3-3A^2+2A+9E$のとき,行列$B$を求めよ.
(3)行列$A$の表す$1$次変換によって,直線$2x-y+1=0$上の点を移す.このとき,像を表す図形の方程式を求めよ.
北九州市立大学 公立 北九州市立大学 2013年 第2問
以下の問いの空欄$[サ]$~$[ト]$に入れるのに適する数値,式を解答箇所に記せ.証明や説明は必要としない.

(1)$i$を虚数単位とする.$x=1+i$および$y=1-i$のとき,$x^2+5xy+4y^2$の値は実部が$[サ]$,虚部が$[シ]$となる.
(2)$2$点$(-1,\ 0)$,$(3,\ 2)$を通る半径が$\sqrt{10}$の円は,中心の座標が$([ス],\ [セ])$のものと$([ソ],\ [タ])$のものがある.
(3)$\alpha$と$\beta$が鋭角で,$\displaystyle \sin \alpha=\frac{1}{3}$,$\displaystyle \sin \beta=\frac{3}{5}$のとき,$\sin (\alpha+\beta)$の値は$[チ]$である.
(4)方程式$\displaystyle \log_2 x \cdot \log_2 \frac{x}{2}=12$の解は,$x=[ツ]$と$x=[テ]$である.
(5)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,$S_n=n \cdot 2^{n+1}$で表されるとき,この数列の一般項$a_n$は$[ト]$となる.
福島県立医科大学 公立 福島県立医科大学 2013年 第1問
以下の各問いに答えよ.

(1)座標平面上の直線$x+2y=6$上にあって,点$(2,\ -3)$との距離が最小になる点の座標を求めよ.
(2)座標平面上の曲線$C:x^2+xy+y^2=3$について,以下の問いに答えよ.

(i) 原点のまわりの${45}^\circ$の回転移動によって,$C$上の各点が移る曲線の方程式を求めよ.
(ii) 曲線$C$で囲まれた図形のうち,$y \geqq 0$の領域に含まれる部分の面積を求めよ.

(3)座標平面上において,曲線$C_1:y=x \log x (x \geqq 1)$と放物線$C_2:y=ax^2$がある点$\mathrm{P}$を共有し,$\mathrm{P}$において共通の接線$\ell$を持つものとする.

(i) $a$の値を求めよ.
(ii) $C_1$,$C_2$および$x$軸によって囲まれた図形の面積を$S_1$とし,$C_1$,$\ell$および$x$軸によって囲まれた図形の面積を$S_2$とする.$S_1,\ S_2$の値を求めよ.

(4)$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}$と$\angle \mathrm{B}$の大きさをそれぞれ$A$,$B$で表し,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の対辺の長さをそれぞれ$a,\ b,\ c$で表す.$\displaystyle \tan \theta=\frac{3}{4}$になる$\displaystyle \theta \left( -\frac{\pi}{2}<\theta<\frac{\pi}{2} \right)$について,$\displaystyle \frac{a}{c} \cos (B-\theta)+\frac{b}{c} \cos (A+\theta)$の値を求めよ.
(5)$n$は自然数とする.導関数の定義にしたがって,関数$f(x)=x^n$の導関数を求めよ.
(6)$n$は$2$以上の自然数とする.$\displaystyle \frac{1}{2^n}$は,小数第$(n-1)$位が$2$,小数第$n$位が$5$である小数第$n$位までの有限小数で表わされることを示せ.
京都府立大学 公立 京都府立大学 2013年 第4問
$x \geqq 0$とする.関数$f(x)=-x^3+x$と関数$g(x)=x^3-x^2$がある.$xy$平面上に曲線$C_1:y=f(x)$および曲線$C_2:y=g(x)$を定めるとき,以下の問いに答えよ.

(1)曲線$C_1$上の点$(1,\ 0)$における曲線$C_1$の接線の方程式を求めよ.
(2)$(1)$で得られた曲線$C_1$の接線と曲線$C_2$の接線が直交するとき,曲線$C_2$の接線の方程式を求めよ.
(3)$0 \leqq x \leqq 1$において,$f(x) \geqq g(x)$が成り立つことを示せ.
(4)原点を通り,曲線$C_1$と曲線$C_2$とで囲まれる図形の面積を二等分する直線の方程式を求めよ.
福岡女子大学 公立 福岡女子大学 2013年 第2問
$m>0$,$n>0$とする.座標平面の$x$軸上に原点$\mathrm{O}$をはさんで左側に点$\mathrm{B}$,右側に点$\mathrm{C}$があり,線分$\mathrm{BC}$の長さを$c$とする.ただし,点$\mathrm{B}$と点$\mathrm{C}$は共に点$\mathrm{O}$と異なるものとする.以下の問に答えなさい.

(1)原点$\mathrm{O}$が線分$\mathrm{BC}$を$m:n$に内分するとき,$\mathrm{B}$,$\mathrm{C}$の$x$座標を$m,\ n,\ c$を用いて表しなさい.
(2)座標平面上の任意の点$\mathrm{A}(a,\ b)$は,次の関係式を満たすことを示しなさい.
\[ \frac{n}{m+n} \mathrm{AB}^2+\frac{m}{m+n} \mathrm{AC}^2=\mathrm{AO}^2+\frac{n}{m} \mathrm{BO}^2 \]
京都府立大学 公立 京都府立大学 2013年 第1問
$xy$平面上に,原点$\mathrm{O}$を中心とする半径$1$の円$C$と,点$(4,\ 3)$を中心とする半径$1$の円$D$がある.円$C$上に異なる$2$点$\mathrm{A}$,$\mathrm{B}$があり,円$D$上に点$\mathrm{P}$がある.$2$つの直線$\mathrm{AP}$,$\mathrm{BP}$は円$C$の接線とする.直線$\mathrm{AB}$と直線$\mathrm{OP}$の交点を$\mathrm{Q}$とするとき,以下の問いに答えよ.

(1)点$\mathrm{P}$の座標を$(5,\ 3)$とするとき,直線$\mathrm{AB}$の方程式を求めよ.
(2)$(1)$のとき,点$\mathrm{Q}$の座標を求めよ.
(3)点$\mathrm{P}$が円$D$の円周上を動くとき,点$\mathrm{Q}$の軌跡が点$\displaystyle \left( \frac{1}{6},\ \frac{1}{8} \right)$を中心とする半径$\displaystyle \frac{1}{24}$の円となることを示せ.
東京大学 国立 東京大学 2012年 第4問
$n$を$2$以上の整数とする.自然数($1$以上の整数)の$n$乗になる数を$n$乗数と呼ぶことにする.以下の問いに答えよ.

(1)連続する$2$個の自然数の積は$n$乗数でないことを示せ.
(2)連続する$n$個の自然数の積は$n$乗数でないことを示せ.
東京大学 国立 東京大学 2012年 第5問
行列$A=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$が次の条件(D)を満たすとする.

\mon[(D)] $A$の成分$a$,$b$,$c$,$d$は整数である.また,平面上の4点$(0,\ 0)$,$(a,\ b)$,$(a+c,\ b+d)$,$(c,\ d)$は,面積1の平行四辺形の4つの頂点をなす.

$B=\biggl( \begin{array}{cc}
1 & 1 \\
0 & 1
\end{array} \biggr)$とおく.次の問いに答えよ.

(1)行列$BA$と$B^{-1}A$も条件(D)を満たすことを示せ.
(2)$c=0$ならば,$A$に$B$,$B^{-1}$のどちらかを左から次々にかけることにより,4個の行列$\biggl( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \biggr),\ \biggl( \begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array} \biggr),\ \biggl( \begin{array}{rr}
1 & 0 \\
0 & -1
\end{array} \biggr),\ \biggl( \begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array} \biggr)$のどれかにできることを示せ.
(3)$|\,a\,| \geqq |\,c\,| >0$とする.$BA$,$B^{-1}A$に少なくともどちらか一方は,それを$\biggl( \begin{array}{cc}
x & y \\
z & w
\end{array} \biggr)$とすると
\[ |\,x\,|+|\,z\,| < |\,a\,|+|\,c\,| \]
を満たすことを示せ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。