タグ「証明」の検索結果

109ページ目:全1924問中1081問~1090問を表示)
ノートルダム清心女子大学 私立 ノートルダム清心女子大学 2013年 第1問
以下の問いに答えなさい.

(1)次の$2$次方程式を解きなさい.解の分母は有理化しなさい.
\[ (1+\sqrt{3})x^2+(2+\sqrt{3})x+1=0 \]
(2)$\alpha$と$\beta$は$2$次関数$y=ax^2+bx+c$のグラフと$x$軸の共有点の$x$座標であり,$\alpha<-1$と$0<\beta<1$を満たしているものとする.このとき次の式の符号を求め,その理由も示しなさい.ただし,$a<0$とする.
\[ \nagamaruichi -\frac{b}{2a} \qquad \nagamaruni b \qquad \nagamarusan c \qquad \nagamarushi b^2-4ac \qquad \nagamarugo a-b+c \qquad \nagamaruroku a+b+c \]
(3)高さ$5$メートルの像がある.これと同じ材質を用いて,像と相似形で高さ$10$センチメートルのミニチュアを作るとする.このとき次の問いに答えなさい.ただし,像もミニチュアも均質で,中に空洞はないものとする.

(i) もとの像とこのミニチュアの相似比を,最も簡単な整数の比として求めなさい.
(ii) もとの像と同じ体積の材料から何個のミニチュアを作ることができるか.ただし,材料は余すところなくすべて使えるものとする.
(iii) $(ⅱ)$でできたミニチュアすべての表面積の合計はもとの像の表面積の何倍か.
県立広島大学 公立 県立広島大学 2013年 第3問
実数$a,\ b,\ \alpha$を定数とし,$\displaystyle 0<\alpha<\frac{\pi}{2}$とする.このとき,
\[ \overrightarrow{d_n}=(\cos n \alpha,\ \sin n \alpha) \quad (n=0,\ 1,\ 2,\ 3,\ \cdots) \]
を座標平面上のベクトルとする.ベクトル$\overrightarrow{p_n}$を,
\[ \overrightarrow{p_1}=\overrightarrow{d_1},\quad \overrightarrow{p_{n+1}}=a \overrightarrow{p_n}+b \overrightarrow{d_{n-1}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.$\overrightarrow{p_2}=\overrightarrow{d_2}$のとき次の問いに答えよ.

(1)$a,\ b$を求めよ.
(2)すべての自然数$n$に対し,$\overrightarrow{p_n}=\overrightarrow{d_n}$となることを示せ.
岡山県立大学 公立 岡山県立大学 2013年 第1問
$a,\ b$をいずれも正の数とする.次の問いに答えよ.

(1)$x$を正の数とするとき,次の不等式を証明せよ.
\[ a^{x+1}+b^{x+1} \geqq ab^x+a^xb \]
(2)$n$を自然数とするとき,次の不等式を証明せよ.
\[ \left( \frac{a+b}{2} \right)^n \leqq \frac{a^n+b^n}{2} \]
(3)$a+b \sqrt{2}=4$のとき,$a^4+4b^4$の最小値を求めよ.
広島市立大学 公立 広島市立大学 2013年 第2問
$p,\ q$を実数の定数とする.$2$次関数$f(x)=x^2+px+q$について,以下の問いに答えよ.

(1)$f(a)=a$を満たす実数$a$が存在するための$p,\ q$についての必要十分条件を求めよ.
(2)$f(a)=b,\ f(b)=a$を満たす異なる実数$a,\ b$が存在することと,$p,\ q$が不等式$(p-1)^2-4(q+1)>0$を満たすことは同値であることを証明せよ.
兵庫県立大学 公立 兵庫県立大学 2013年 第5問
関数$\displaystyle f(x)=\frac{1}{4}x^2-x+\log (x+1) (x>-1)$について,次の問いに答えよ.ただし,不等式$2<e<3$が成り立つことは使ってよい.

(1)$y=f(x)$のグラフの概形をかけ.ただし,凹凸,変曲点は調べなくてよい.
(2)$a \neq 0$かつ$f(a)=0$となる$a$はただ$1$つあって,$1<a<2$を満たすことを示せ.
(3)区間$[0,\ a]$において曲線$y=f(x)$と$x$軸で囲まれる部分の面積を$S_1$とし,区間$[a,\ 4]$において曲線$y=f(x)$と$x$軸および直線$x=4$で囲まれる部分の面積を$S_2$とする.$S_1<S_2$を示せ.
兵庫県立大学 公立 兵庫県立大学 2013年 第1問
次の問に答えなさい.

(1)$2$つの変数$x,\ y$をもつ関数$f(x,\ y)$を$\displaystyle f(x,\ y)=\frac{x+y}{2}+\frac{|x-y|}{2}$と定める.$x,\ y$が実数の値であるとき,$f(x,\ y)=x$は$x \geqq y$であるための必要十分条件であることを示しなさい.
(2)方程式$x^2+y^2-1+|x^2+y^2-1|=0$を満たす点$(x,\ y)$全体の集合を図示しなさい.
岡山県立大学 公立 岡山県立大学 2013年 第2問
放物線$C:y=x^2$上に$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$がある.ただし,$a<b$とする.放物線$C$と線分$\mathrm{AB}$が囲む部分の面積を$S$とする.次の問いに答えよ.

(1)$\displaystyle S=\frac{(b-a)^3}{6}$であることを示せ.
(2)$2$点$\mathrm{A},\ \mathrm{B}$を固定する.放物線$C$上の点$\mathrm{P}(t,\ t^2)$に対して,放物線$C$と線分$\mathrm{AP}$が囲む部分の面積を$S_1$,放物線$C$と線分$\mathrm{BP}$が囲む部分の面積を$S_2$とする.$a<t<b$のとき,$S_1+S_2$の最小値を求めよ.
(3)常に$\displaystyle S=\frac{9}{2}$であるように,$2$点$\mathrm{A},\ \mathrm{B}$が放物線$C$上を動く.このとき,線分$\mathrm{AB}$の中点の軌跡の方程式を求めよ.
愛知県立大学 公立 愛知県立大学 2013年 第2問
座標平面上で,原点$\mathrm{O}$を始点とし第$1$象限の点$\mathrm{A}$を通る半直線$\mathrm{OA}$と$x$軸の正の向きとのなす角を$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$とする.点$\mathrm{B}$は$x$軸上にあり,$|\overrightarrow{\mathrm{OB}}|=b$,$|\overrightarrow{\mathrm{OA}}|=a$とする.原点$\mathrm{O}$から直線$\mathrm{AB}$に下ろした垂線と直線$\mathrm{AB}$との交点を$\mathrm{P}$とする.このとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}=t \overrightarrow{\mathrm{AB}}$とおく.$\overrightarrow{\mathrm{OP}}=t \overrightarrow{\mathrm{OB}}+(1-t) \overrightarrow{\mathrm{OA}}$であることを示し,$t$を$a,\ b,\ \theta$で表せ.
(2)$\theta$を固定し$b=1$とする.点$\mathrm{P}$が線分$\mathrm{AB}$上に存在するような$a$の値の範囲を求めよ.
(3)(2)において,$\triangle \mathrm{OAB}$の面積の最大値を求めよ.
(4)(2)において,$\displaystyle \theta=\frac{\pi}{3}$とする.面積が最大となる$\triangle \mathrm{OAB}$は直角三角形であることを示せ.
愛知県立大学 公立 愛知県立大学 2013年 第3問
$a$を$a>2$を満たす実数とし,
\[ f(t)=\frac{\sin^2 at+t^2}{at \sin at},\quad g(t)=\frac{\sin^2 at-t^2}{at \sin at} \quad \left( 0<|t|<\frac{\pi}{2a} \right) \]
とする.また,$C$を曲線$\displaystyle x^2-y^2=\frac{4}{a^2} \left( x \geqq \frac{2}{a} \right)$とする.このとき,以下の問いに答えよ.

(1)点$(f(t),\ g(t))$は,曲線$C$上の点であることを示せ.
(2)点$\displaystyle \left( \lim_{t \to 0}f(t),\ \lim_{t \to 0}g(t) \right)$における曲線$C$の法線の方程式を求めよ.
(3)曲線$C$と(2)で求めた法線および$x$軸とで囲まれた部分を,$x$軸のまわりに$1$回転させてできる回転体の体積を$V(a)$とする.$V(a)$を$a$を用いて表せ.また,$\displaystyle \lim_{a \to \infty}V(a)$を求めよ.
兵庫県立大学 公立 兵庫県立大学 2013年 第2問
次の問に答えなさい.

(1)放物線$y=x^2+9$の点$(t,\ t^2+9)$における接線と放物線$y=x^2$の交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$としたとき,$\alpha+\beta$と$\alpha\beta$をそれぞれ$t$で表しなさい.
(2)放物線$y=x^2+9$の点$(t,\ t^2+9)$における接線と放物線$y=x^2$とで囲まれた図形の面積は,$t$の値によらず一定であることを示しなさい.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。