タグ「証明」の検索結果

106ページ目:全1924問中1051問~1060問を表示)
甲南大学 私立 甲南大学 2013年 第2問
以下の問いに答えよ.

(1)$x \geqq 0$,$y>0$,$a>b$のとき,$\displaystyle b \leqq \frac{ax+by}{x+y}$であることを示せ.
(2)$x \geqq 0$,$y>0$,$a>b$で$(x+y)^2=ax+by$とする.$s=x+y$とおくとき,$a,\ b,\ s$の大小関係を求めよ.
(3)$x \geqq 0$,$y>0$,$z \geqq 0$,$a>b>c$で$(x+y+z)^2=ax+by+cz$とする.$t=x+y+z$とおくとき,$a,\ c,\ t$の大小関係を求めよ.
甲南大学 私立 甲南大学 2013年 第2問
以下の問いに答えよ.

(1)$x \geqq 0$,$y>0$,$a>b$のとき,$\displaystyle b \leqq \frac{ax+by}{x+y}$であることを示せ.
(2)$x \geqq 0$,$y>0$,$a>b$で$(x+y)^2=ax+by$とする.$s=x+y$とおくとき,$a,\ b,\ s$の大小関係を求めよ.
(3)$x \geqq 0$,$y>0$,$z \geqq 0$,$a>b>c$で$(x+y+z)^2=ax+by+cz$とする.$t=x+y+z$とおくとき,$a,\ c,\ t$の大小関係を求めよ.
昭和大学 私立 昭和大学 2013年 第2問
$2$つの$2$次曲線$C_1:y=x^2$,$C_2:y^2=x$がある.次の各問に答えよ.

(1)$C_1$,$C_2$のいずれにも接する直線の方程式を求めよ.
(2)$C_1$上の点$\mathrm{P}(p,\ p^2)$を通る直線で$C_2$と接するものがちょうど$2$本引けるような$p$のとり得る値の範囲を求めよ.
(3)$C_1$上の点$\mathrm{P}(p,\ p^2)$を通る直線で$C_2$と接するものがちょうど$2$本引け,さらにその$2$本の接線がいずれも$C_1$と$\mathrm{P}$以外の点でも交わるとする.このような$p$のとり得る値の範囲を求めよ.
(4)$C_1$上の相異なる$2$点$\mathrm{Q}_1(q_1,\ {q_1}^2)$,$\mathrm{Q}_2(q_2,\ {q_2}^2)$について,直線$\mathrm{Q}_1 \mathrm{Q}_2$が$C_2$と接するための条件を求めよ.
(5)$C_1$上の点$\mathrm{P}(p,\ p^2)$を通る直線で$C_2$と接するものがちょうど$2$本引け,さらにその$2$本の接線がいずれも$C_1$と$\mathrm{P}$以外の点でも交わるとする.いま,その$2$本の接線と$C_1$との交点のうち,$\mathrm{P}$以外の交点をそれぞれ$\mathrm{Q}_1$および$\mathrm{Q}_2$とする.このとき,直線$\mathrm{Q}_1 \mathrm{Q}_2$は再び$C_2$と接することを示せ.
名城大学 私立 名城大学 2013年 第2問
図に示す一辺の長さが$10a (a>0)$の正方形$\mathrm{ABCD}$がある.辺上を車両が動くとき,次の問に答えよ.

(1)車両$\mathrm{Q}$が,一定の速度$a$で点$\mathrm{C}$を出発し,点$\mathrm{D}$を経由して点$\mathrm{A}$まで動くものとする.出発時刻を$t=0$とし,時間$t$経過後の点$\mathrm{A}$と車両$\mathrm{Q}$との直線距離を$t$と$a$を用いて表せ.
(2)$(1)$の条件下で,点$\mathrm{A}$と車両$\mathrm{Q}$との間で通信が行われる.通信に必要な電力$y$は,$2$点間の直線距離の$2$乗である.時間$t$経過後の電力$y$の変化を横軸に$t$,縦軸を$y$としたグラフに示せ.
(3)$(1)$の条件下で,車両$\mathrm{P}$が,一定の速度$a$で点$\mathrm{A}$を出発し,点$\mathrm{B}$を経由して点$\mathrm{C}$へ向かうものとする.出発時刻を$t=0$とし,時間$t$経過後の車両$\mathrm{P}$と車両$\mathrm{Q}$との直線距離の$2$乗$z$の変化を横軸に$t$,縦軸を$z$としたグラフに示せ.
(図は省略)
名城大学 私立 名城大学 2013年 第2問
$\triangle \mathrm{ABC}$は$\mathrm{AB}=7$,$\mathrm{BC}=8$,$\mathrm{AC}=5$とする.そして,辺$\mathrm{BC}$上に点$\mathrm{D}$をとる(ただし,点$\mathrm{D}$は点$\mathrm{B}$および点$\mathrm{C}$と一致しない).また,$\triangle \mathrm{ABD}$の外接円の半径を$r_1$,$\triangle \mathrm{ACD}$の外接円の半径を$r_2$とする.次の問に答えよ.

(1)$\sin \angle \mathrm{ACB}$の値を求めよ.
(2)$\mathrm{AD}=\mathrm{AC}$の場合,線分$\mathrm{BD}$の長さを求めよ.
(3)$\mathrm{AD}=t$として,$\displaystyle \frac{r_1}{r_2}$の値は$t$の値によらず一定であることを示し,その値を求めよ.
名城大学 私立 名城大学 2013年 第4問
関数$f(x)=x^3+ax^2+bx+c$(ただし,$a,\ b,\ c$は実数の定数)について,次の問に答えよ.

(1)$a$は$a>-3$を満たし,$f(x)$は$x=1$のとき極小値をとる.このとき,$b$を$a$を用いて表せ.
(2)$(1)$のとき,さらに,$y=f(x)$のグラフが点$(0,\ 0)$に関して対称であるとする.このとき,$a,\ b,\ c$の値を求めよ.
(3)$y=f(x)$のグラフは,曲線上の点$\displaystyle \mathrm{A} \left( -\frac{a}{3},\ f \left( -\frac{a}{3} \right) \right)$に関して対称であることを示せ.
学習院大学 私立 学習院大学 2013年 第4問
次の問いに答えよ.

(1)$x>0$のとき,$1+2 \sin x<x+e^x$が成り立つことを示せ.
(2)$x \geqq 0$の範囲にあって,$2$つの曲線$y=1+2 \sin x,\ y=x+e^x$と直線$x=\pi$とで囲まれる領域を$x$軸のまわりに$1$回転して得られる立体の体積を求めよ.
学習院大学 私立 学習院大学 2013年 第2問
$a,\ b,\ c$を実数とする.

(1)不等式
\[ 3(a^2+b^2+c^2) \geqq (a+b+c)^2 \]
を証明せよ.また,等号が成り立つとき$a=b=c$であることを証明せよ.
(2)不等式
\[ 27(a^4+b^4+c^4) \geqq (a+b+c)^4 \]
を証明せよ.
広島修道大学 私立 広島修道大学 2013年 第3問
$\triangle \mathrm{ABC}$において,$\mathrm{BC}=a$,$\mathrm{CA}=b$,$\mathrm{AB}=c$とする.$\angle \mathrm{A}$の二等分線が辺$\mathrm{BC}$と交わる点を$\mathrm{D}$とし,$\theta=\angle \mathrm{BAD}$とするとき,次の問に答えよ.

(1)$\cos \theta$の値を$a,\ b,\ c$の式で表せ.

(2)$\displaystyle \mathrm{AD}=\frac{2bc}{b+c} \cos \theta$であることを示せ.

(3)$a=3,\ b=4,\ c=2$のとき,線分$\mathrm{AD}$の長さを求めよ.
広島修道大学 私立 広島修道大学 2013年 第1問
次の各問に答えよ.

(1)方程式$|2x-3|+3=(x-3)^2$を解け.
(2)$21$本のくじの中に当たりくじが$n$本ある.このくじを同時に$2$本引くとき,次の問に答えよ.ただし,$1 \leqq n \leqq 21$とする.

(i) $2$本ともはずれる確率を求めよ.
(ii) 少なくとも$1$本は当たる確率が$\displaystyle \frac{1}{2}$以上となる最小の$n$を求めよ.

(3)$x,\ y$は実数とする.

命題$p$:「$x \neq 3$または$y \neq 2$」ならば「$2x-y \neq 4$または$x+y \neq 5$」

について次の問に答えよ.

(i) 命題$p$の対偶を述べよ.
(ii) 命題$p$を証明せよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。