タグ「証明」の検索結果

100ページ目:全1924問中991問~1000問を表示)
大分大学 国立 大分大学 2013年 第4問
$f(x)=\log 2x$とし,曲線$y=f(x)$を$C$とする.曲線$C$と$x$軸との交点における曲線$C$の接線$\ell$の方程式を$y=g(x)$とする.

(1)直線$\ell$の方程式を求めなさい.
(2)$h(x)=g(x)-f(x) \ (x>0)$とおくと,$h(x) \geqq 0 \ (x>0)$であることを示しなさい.また,$h(x)=0$となる$x$の値を求めなさい.
(3)曲線$C$と直線$\ell$と直線$\displaystyle x=\frac{1}{2}e$で囲まれた部分の面積$S$を求めなさい.
お茶の水女子大学 国立 お茶の水女子大学 2013年 第5問
$\tan \alpha=2$,$\tan \beta=5$,$\tan \gamma=8$,$\displaystyle 0<\alpha,\ \beta,\ \gamma<\frac{\pi}{2}$とする.

(1)$\sin \alpha$を求めよ.
(2)$\tan (\alpha+\beta+\gamma)$,$\alpha+\beta+\gamma$を求めよ.
(3)$\beta-\alpha>\gamma-\beta$となることを示せ.
(4)$\displaystyle \beta>\frac{5\pi}{12}$となることを示せ.
お茶の水女子大学 国立 お茶の水女子大学 2013年 第6問
座標平面上の$3$点$\mathrm{A}(a_1,\ a_2)$,$\mathrm{B}(b_1,\ b_2)$,$\mathrm{C}(c_1,\ c_2)$について考える.
\[ I=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right),\quad J=\left( \begin{array}{cc}
-\displaystyle\frac{1}{2} & -\displaystyle\frac{\sqrt{3}}{2} \\
\displaystyle\frac{\sqrt{3}}{2} & -\displaystyle\frac{1}{2}
\end{array} \right) \]
とおく.

(1)$I+J+J^2,\ J^3$を求めよ.
(2)$\left( \begin{array}{c}
a_1 \\
a_2
\end{array} \right) \neq \left( \begin{array}{c}
0 \\
0
\end{array} \right)$,$\left( \begin{array}{c}
b_1 \\
b_2
\end{array} \right)=J \left( \begin{array}{c}
a_1 \\
a_2
\end{array} \right)$,$\left( \begin{array}{c}
c_1 \\
c_2
\end{array} \right)=J^2 \left( \begin{array}{c}
a_1 \\
a_2
\end{array} \right)$のとき,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$は正三角形をなすことを示せ.
(3)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が異なり,
\[ \left( \begin{array}{c}
a_1 \\
a_2
\end{array} \right)+J \left( \begin{array}{c}
b_1 \\
b_2
\end{array} \right)+J^2 \left( \begin{array}{c}
c_1 \\
c_2
\end{array} \right)=\left( \begin{array}{c}
0 \\
0
\end{array} \right) \]
が成り立つとき,三角形$\mathrm{ABC}$が正三角形となることを示せ.
お茶の水女子大学 国立 お茶の水女子大学 2013年 第7問
$-2 \leqq x \leqq 2$上で関数$f(x),\ g(x)$を
\[ f(x)=\frac{1}{2}-\frac{1}{4}|x|,\quad g(x)=\int_{-2}^x f(t) \, dt \]
によって定める.

(1)$y=f(x)$のグラフの概形を描け.
(2)$g(x)$を計算し,$y=g(x)$のグラフの概形を描け.
(3)$y=g(x)$の逆関数$y=g^{-1}(x)$を求め,そのグラフの概形を描け.
(4)$\displaystyle \int_0^1 (g^{-1}(x))^2 \, dx$を計算せよ.
(5)$y=g^{-1}(x)$は$\displaystyle x=\frac{1}{2}$で微分可能であることを示せ.
群馬大学 国立 群馬大学 2013年 第1問
$a,\ b$はともに$0$以上の実数とする.

(1)$m$を$2$以上の自然数とする.このとき,命題「$a^m+b^m<1$ならば,$a+b \leqq 1$である」は,偽であることを示せ.
(2)命題「$a+b<1$ならば,すべての自然数$n$に対して$a^n+b^n<1$である」の真偽を調べ,真である場合には証明し,偽である場合には反例をあげよ.
鹿児島大学 国立 鹿児島大学 2013年 第2問
次の各問いに答えよ.

(1)次の$(ⅰ),\ (ⅱ)$に答えよ.

(i) $m,\ n$が自然数ならば,$\displaystyle \frac{m}{n} \neq \sqrt{2}$である.このことを証明せよ.
(ii) $p,\ q$が自然数ならば,$\sqrt{2}$は$\displaystyle \frac{p}{q}$と$\displaystyle \frac{2q}{p}$の間にある.すなわち,$\displaystyle \frac{p}{q}<\sqrt{2}<\frac{2q}{p}$または$\displaystyle \frac{2q}{p}<\sqrt{2}<\frac{p}{q}$が成り立つ.このことを証明せよ.

(2)定数$a$は実数で,$a>0,\ a \neq 1$とする.このとき,すべての正の実数$x,\ y$に対して$x^{\log_ay}=y^{\log_ax}$が成り立つ.このことを証明せよ.
鹿児島大学 国立 鹿児島大学 2013年 第3問
次の各問いに答えよ.

(1)三角形$\mathrm{ABC}$の垂心を$\mathrm{H}$とする.次の等式が成り立つことを示せ.
\[ \overrightarrow{\mathrm{HA}} \cdot \overrightarrow{\mathrm{HB}}=\overrightarrow{\mathrm{HB}} \cdot \overrightarrow{\mathrm{HC}}=\overrightarrow{\mathrm{HC}} \cdot \overrightarrow{\mathrm{HA}} \]
ただし,三角形の各頂点から向かい合う辺またはその延長に下ろした$3$本の垂線は$1$点で交わる.この点を三角形の垂心という.
(2)次の$(ⅰ),\ (ⅱ)$に答えよ.

(i) 自然数$n$に対して自然数$a_n$を次のように定義する.
\[ a_n=(2n-1) \cdot (2n-3) \cdot \cdots \cdot 3 \cdot 1 \]
このとき,すべての自然数$k$に対して$(2k)!=2^k k! a_k$が成り立つ.このことを証明せよ.
(ii) すべての自然数$n$に対して,$2^n!$は$2^{(2^n-1)}$で割り切れる.このことを数学的帰納法で証明せよ.
鹿児島大学 国立 鹿児島大学 2013年 第5問
$2$次の正方行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$に対して,$\Delta (A)=ad-bc$とおく.たとえば単位行列$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$に対しては$\Delta (E)=1 \times 1-0 \times 0=1$となる.また$K=\left( \begin{array}{cc}
2 & 3 \\
5 & 7
\end{array} \right)$に対しては$\Delta (K)=2 \times 7-3 \times 5=-1$となる.次の各問いに答えよ.

(1)$P=\left( \begin{array}{cc}
0 & 1 \\
2 & 3
\end{array} \right),\ Q=\left( \begin{array}{cc}
1 & 2 \\
3 & 4
\end{array} \right)$に対して$R=PQ$とおく.$\Delta (P),\ \Delta (Q),\ \Delta (R)$を計算し,$\Delta (R)=\Delta (P) \Delta (Q)$が成り立つことを確かめよ.
(2)すべての$2$次の正方行列$A,\ B$に対して,$C=AB$とおくと$\Delta (C)=\Delta (A) \Delta (B)$が成り立つことを示せ.
(3)$X^2=\left( \begin{array}{cc}
0 & 1 \\
1 & 0
\end{array} \right)$となる$2$次の正方行列$X$ですべての成分が実数であるようなものは存在しないことを示せ.
(4)$2$次の正方行列$A$に逆行列$B$が存在したとする.$A$と$B$の成分がすべて整数ならば,$\Delta (A)$は$1$か$-1$のどちらかである.このことを示せ.
鹿児島大学 国立 鹿児島大学 2013年 第6問
$xy$平面において,点$\mathrm{F}(p,\ 0)$と$y$軸から等距離にある点の軌跡を$C$とする.ただし$p>0$とする.次の各問いに答えよ.

(1)$C$を表す方程式を求めよ.
(2)$C$上の点$\mathrm{P}(x_0,\ y_0)$における$C$の接線$\ell$の方程式を求めよ.ただし$y_0 \neq 0$とする.
(3)(2)の$\ell$と$x$軸の交点を$\mathrm{Q}$とするとき,$\mathrm{FP}=\mathrm{FQ}$であることを証明せよ.
山口大学 国立 山口大学 2013年 第2問
数列$\{a_n\}$が
\[ a_1=\frac{1}{4},\quad a_{n+1}=\frac{a_n}{4a_n+5} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定められるとき,次の問いに答えなさい.

(1)$a_2,\ a_3,\ a_4$を求めなさい.
(2)$\displaystyle b_n=\frac{1}{a_n}$とおくとき,数列$\{b_n\}$は
\[ b_{n+1}=5b_n+4 \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすことを証明しなさい.
(3)数列$\{a_n\}$の一般項を求めなさい.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。