「証明」について
タグ「証明」の検索結果
(1ページ目:全1924問中1問~10問を表示) 国立 京都大学 2016年 第4問
四面体$\mathrm{OABC}$が次の条件を満たすならば,それは正四面体であることを示せ.
条件:頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$からそれぞれの対面を含む平面へ下ろした垂線は対面の重心を通る.
ただし,四面体のある頂点の対面とは,その頂点を除く他の$3$つの頂点がなす三角形のことをいう.
条件:頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$からそれぞれの対面を含む平面へ下ろした垂線は対面の重心を通る.
ただし,四面体のある頂点の対面とは,その頂点を除く他の$3$つの頂点がなす三角形のことをいう.
国立 東京海洋大学 2016年 第3問
座標平面上に放物線$C:y=x^2$がある.点$\mathrm{P}(t,\ t^2)$(ただし,$t>0$)における$C$の接線を$\ell$とし,$\ell$が$x$軸,$y$軸と交わる点をそれぞれ$\mathrm{M}$,$\mathrm{N}$とする.$\mathrm{M}$を通り$\ell$と直交する直線が,$y$軸,直線$x=t$と交わる点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.
(1)$\angle \mathrm{QPR}$は$\ell$により二等分されることを示せ.
(2)$\triangle \mathrm{PQR}$が正三角形になるような$t$の値を求めよ.
(3)四角形$\mathrm{PQNR}$の面積を$S_1$とし,線分$\mathrm{PQ}$,$y$軸および$C$で囲まれる図形の面積を$S_2$とする.$(2)$のとき,$\displaystyle \frac{S_2}{S_1}$の値を求めよ.
(1)$\angle \mathrm{QPR}$は$\ell$により二等分されることを示せ.
(2)$\triangle \mathrm{PQR}$が正三角形になるような$t$の値を求めよ.
(3)四角形$\mathrm{PQNR}$の面積を$S_1$とし,線分$\mathrm{PQ}$,$y$軸および$C$で囲まれる図形の面積を$S_2$とする.$(2)$のとき,$\displaystyle \frac{S_2}{S_1}$の値を求めよ.
国立 京都大学 2016年 第3問
四面体$\mathrm{OABC}$が次の条件を満たすならば,それは正四面体であることを示せ.
条件:頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$からそれぞれの対面を含む平面へ下ろした垂線は対面の外心を通る.
ただし,四面体のある頂点の対面とは,その頂点を除く他の$3$つの頂点がなす三角形のことをいう.
条件:頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$からそれぞれの対面を含む平面へ下ろした垂線は対面の外心を通る.
ただし,四面体のある頂点の対面とは,その頂点を除く他の$3$つの頂点がなす三角形のことをいう.
国立 東京海洋大学 2016年 第1問
数列$\{a_n\},\ \{b_n\}$を以下で定める.
$a_1=2,\quad b_1=1$
$\left\{ \begin{array}{l}
a_{n+1}=2a_n+3b_n \\
b_{n+1}=a_n+2b_n
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots)$
(1)$n=1,\ 2,\ 3,\ \cdots$について,
$a_n+\sqrt{3}b_n={(2+\sqrt{3})}^n$
$a_n-\sqrt{3}b_n={(2-\sqrt{3})}^n$
が成り立つことを示せ.
(2)$\displaystyle \frac{b_n}{a_n}$を$n$を用いて表せ.
(3)数列$\{e_n\}$を
\[ e_n=\frac{\sqrt{3} \, b_n}{a_n}-1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定めるとき,$n \geqq 3$ならば
\[ |e_n|<0.001 \]
であることを示せ.ただし,$\displaystyle 0.071<\frac{2-\sqrt{3}}{2+\sqrt{3}}<0.072$を用いてもよい.
$a_1=2,\quad b_1=1$
$\left\{ \begin{array}{l}
a_{n+1}=2a_n+3b_n \\
b_{n+1}=a_n+2b_n
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots)$
(1)$n=1,\ 2,\ 3,\ \cdots$について,
$a_n+\sqrt{3}b_n={(2+\sqrt{3})}^n$
$a_n-\sqrt{3}b_n={(2-\sqrt{3})}^n$
が成り立つことを示せ.
(2)$\displaystyle \frac{b_n}{a_n}$を$n$を用いて表せ.
(3)数列$\{e_n\}$を
\[ e_n=\frac{\sqrt{3} \, b_n}{a_n}-1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定めるとき,$n \geqq 3$ならば
\[ |e_n|<0.001 \]
であることを示せ.ただし,$\displaystyle 0.071<\frac{2-\sqrt{3}}{2+\sqrt{3}}<0.072$を用いてもよい.
国立 一橋大学 2016年 第5問
次の$\tocichi$,$\tocni$のいずれか一方を選択して解答せよ.
\mon[$\tocichi$] 平面上の$2$つのベクトル$\overrightarrow{a}$と$\overrightarrow{b}$は零ベクトルではなく,$\overrightarrow{a}$と$\overrightarrow{b}$のなす角度は${60}^\circ$である.このとき
\[ r=\frac{|\overrightarrow{a}+2 \overrightarrow{b}|}{|2 \overrightarrow{a}+\overrightarrow{b}|} \]
のとりうる値の範囲を求めよ.
\mon[$\tocni$] $x$は$0$以上の整数である.次の表は$2$つの科目$\mathrm{X}$と$\mathrm{Y}$の試験を受けた$5$人の得点をまとめたものである.
\begin{tabular}{|l||c|c|c|c|c|}
\hline
& $①$ & $②$ & $③$ & $④$ & $⑤$ \\ \hline
科目$\mathrm{X}$の得点 & $x$ & $6$ & $4$ & $7$ & $4$ \\ \hline
科目$\mathrm{Y}$の得点 & $9$ & $7$ & $5$ & $10$ & $9$ \\ \hline
\end{tabular}
(i) $2n$個の実数$a_1,\ a_2,\ \cdots,\ a_n,\ b_1,\ b_2,\ \cdots,\ b_n$について,$\displaystyle a=\frac{1}{n} \sum_{k=1}^n a_k$,$\displaystyle b=\frac{1}{n} \sum_{k=1}^n b_k$とすると,
\[ \sum_{k=1}^n (a_k-a)(b_k-b)=\sum_{k=1}^n a_kb_k-nab \]
が成り立つことを示せ.
(ii) 科目$\mathrm{X}$の得点と科目$\mathrm{Y}$の得点の相関係数$r_{\mathrm{XY}}$を$x$で表せ.
(iii) $x$の値を$2$増やして$r_{\mathrm{XY}}$を計算しても値は同じであった.このとき,$r_{\mathrm{XY}}$の値を四捨五入して小数第$1$位まで求めよ.
\mon[$\tocichi$] 平面上の$2$つのベクトル$\overrightarrow{a}$と$\overrightarrow{b}$は零ベクトルではなく,$\overrightarrow{a}$と$\overrightarrow{b}$のなす角度は${60}^\circ$である.このとき
\[ r=\frac{|\overrightarrow{a}+2 \overrightarrow{b}|}{|2 \overrightarrow{a}+\overrightarrow{b}|} \]
のとりうる値の範囲を求めよ.
\mon[$\tocni$] $x$は$0$以上の整数である.次の表は$2$つの科目$\mathrm{X}$と$\mathrm{Y}$の試験を受けた$5$人の得点をまとめたものである.
\begin{tabular}{|l||c|c|c|c|c|}
\hline
& $①$ & $②$ & $③$ & $④$ & $⑤$ \\ \hline
科目$\mathrm{X}$の得点 & $x$ & $6$ & $4$ & $7$ & $4$ \\ \hline
科目$\mathrm{Y}$の得点 & $9$ & $7$ & $5$ & $10$ & $9$ \\ \hline
\end{tabular}
(i) $2n$個の実数$a_1,\ a_2,\ \cdots,\ a_n,\ b_1,\ b_2,\ \cdots,\ b_n$について,$\displaystyle a=\frac{1}{n} \sum_{k=1}^n a_k$,$\displaystyle b=\frac{1}{n} \sum_{k=1}^n b_k$とすると,
\[ \sum_{k=1}^n (a_k-a)(b_k-b)=\sum_{k=1}^n a_kb_k-nab \]
が成り立つことを示せ.
(ii) 科目$\mathrm{X}$の得点と科目$\mathrm{Y}$の得点の相関係数$r_{\mathrm{XY}}$を$x$で表せ.
(iii) $x$の値を$2$増やして$r_{\mathrm{XY}}$を計算しても値は同じであった.このとき,$r_{\mathrm{XY}}$の値を四捨五入して小数第$1$位まで求めよ.
国立 大阪大学 2016年 第1問
次の問いに答えよ.
(1)$a$を正の実数とし,$k$を$1$以上の実数とする.$x$についての$2$次方程式
\[ x^2-kax+a-k=0 \]
は,不等式
\[ -\frac{1}{a}<s \leqq 1 \]
をみたすような実数解$s$をもつことを示せ.
(2)$a$を$3$以上の整数とする.$n^2+a$が$an+1$で割り切れるような$2$以上のすべての整数$n$を$a$を用いて表せ.
(1)$a$を正の実数とし,$k$を$1$以上の実数とする.$x$についての$2$次方程式
\[ x^2-kax+a-k=0 \]
は,不等式
\[ -\frac{1}{a}<s \leqq 1 \]
をみたすような実数解$s$をもつことを示せ.
(2)$a$を$3$以上の整数とする.$n^2+a$が$an+1$で割り切れるような$2$以上のすべての整数$n$を$a$を用いて表せ.
国立 神戸大学 2016年 第4問
約数,公約数,最大公約数を次のように定める.
\begin{itemize}
$2$つの整数$a,\ b$に対して,$a=bk$をみたす整数$k$が存在するとき,$b$は$a$の約数であるという.
$2$つの整数に共通の約数をそれらの公約数という.
少なくとも一方が$0$でない$2$つの整数の公約数の中で最大のものをそれらの最大公約数という.
\end{itemize}
以下の問に答えよ.
(1)$a,\ b,\ c,\ p$は$0$でない整数で$a=pb+c$をみたしているとする.
(i) $a=18$,$b=30$,$c=-42$,$p=2$のとき,$a$と$b$の公約数の集合$S$,および$b$と$c$の公約数の集合$T$を求めよ.
(ii) $a$と$b$の最大公約数を$M$,$b$と$c$の最大公約数を$N$とする.$M$と$N$は等しいことを示せ.ただし,$a,\ b,\ c,\ p$は$0$でない任意の整数とする.
(2)自然数の列$\{a_n\}$を
\[ a_{n+2}=6a_{n+1}+a_n (n=1,\ 2,\ \cdots),\quad a_1=3,\quad a_2=4 \]
で定める.
(i) $a_{n+1}$と$a_n$の最大公約数を求めよ.
(ii) $a_{n+4}$を$a_{n+2}$と$a_n$を用いて表せ.
(iii) $a_{n+2}$と$a_n$の最大公約数を求めよ.
\begin{itemize}
$2$つの整数$a,\ b$に対して,$a=bk$をみたす整数$k$が存在するとき,$b$は$a$の約数であるという.
$2$つの整数に共通の約数をそれらの公約数という.
少なくとも一方が$0$でない$2$つの整数の公約数の中で最大のものをそれらの最大公約数という.
\end{itemize}
以下の問に答えよ.
(1)$a,\ b,\ c,\ p$は$0$でない整数で$a=pb+c$をみたしているとする.
(i) $a=18$,$b=30$,$c=-42$,$p=2$のとき,$a$と$b$の公約数の集合$S$,および$b$と$c$の公約数の集合$T$を求めよ.
(ii) $a$と$b$の最大公約数を$M$,$b$と$c$の最大公約数を$N$とする.$M$と$N$は等しいことを示せ.ただし,$a,\ b,\ c,\ p$は$0$でない任意の整数とする.
(2)自然数の列$\{a_n\}$を
\[ a_{n+2}=6a_{n+1}+a_n (n=1,\ 2,\ \cdots),\quad a_1=3,\quad a_2=4 \]
で定める.
(i) $a_{n+1}$と$a_n$の最大公約数を求めよ.
(ii) $a_{n+4}$を$a_{n+2}$と$a_n$を用いて表せ.
(iii) $a_{n+2}$と$a_n$の最大公約数を求めよ.
国立 大分大学 2016年 第2問
$a$を$0$でない実数とする.$2$つの放物線$y=x^2$,$\displaystyle y=-x^2+2ax+\frac{1}{2a^2}$がある.
(1)$2$つの放物線は異なる$2$点で交わることを示しなさい.
(2)$2$つの放物線の交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とするとき,$\beta-\alpha$を$a$の式で表しなさい.
(3)$2$つの放物線で囲まれた部分の面積$S$を$a$の式で表しなさい.
(4)$(3)$で定めた面積$S$の最小値を求めなさい.
(1)$2$つの放物線は異なる$2$点で交わることを示しなさい.
(2)$2$つの放物線の交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とするとき,$\beta-\alpha$を$a$の式で表しなさい.
(3)$2$つの放物線で囲まれた部分の面積$S$を$a$の式で表しなさい.
(4)$(3)$で定めた面積$S$の最小値を求めなさい.
国立 北海道大学 2016年 第4問
次の問いに答えよ.
(1)次の方程式が異なる$3$つの$0$でない実数解をもつことを示せ.
\[ x^3+x^2-2x-1=0 \quad \cdots \quad ① \]
(2)方程式$①$の$3$つの実数解を$s,\ t,\ u$とし,数列$\{a_n\}$を
\[ a_n=\frac{s^{n-1}}{(s-t)(s-u)}+\frac{t^{n-1}}{(t-u)(t-s)}+\frac{u^{n-1}}{(u-s)(u-t)} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.このとき,
\[ a_{n+3}+a_{n+2}-2a_{n+1}-a_n=0 \quad (n=1,\ 2,\ 3,\ \cdots) \]
が成り立つことを示せ.
(3)$(2)$の$a_n$がすべて整数であることを示せ.
(1)次の方程式が異なる$3$つの$0$でない実数解をもつことを示せ.
\[ x^3+x^2-2x-1=0 \quad \cdots \quad ① \]
(2)方程式$①$の$3$つの実数解を$s,\ t,\ u$とし,数列$\{a_n\}$を
\[ a_n=\frac{s^{n-1}}{(s-t)(s-u)}+\frac{t^{n-1}}{(t-u)(t-s)}+\frac{u^{n-1}}{(u-s)(u-t)} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.このとき,
\[ a_{n+3}+a_{n+2}-2a_{n+1}-a_n=0 \quad (n=1,\ 2,\ 3,\ \cdots) \]
が成り立つことを示せ.
(3)$(2)$の$a_n$がすべて整数であることを示せ.
国立 九州大学 2016年 第4問
自然数$n$に対して,${10}^n$を$13$で割った余りを$a_n$とおく.$a_n$は$0$から$12$までの整数である.以下の問いに答えよ.
(1)$a_{n+1}$は$10a_n$を$13$で割った余りに等しいことを示せ.
(2)$a_1,\ a_2,\ \cdots,\ a_6$を求めよ.
(3)以下の$3$条件を満たす自然数$N$をすべて求めよ.
(i) $N$を十進法で表示したとき$6$桁となる.
(ii) $N$を十進法で表示して,最初と最後の桁の数字を取り除くと$2016$となる.
(iii) $N$は$13$で割り切れる.
(1)$a_{n+1}$は$10a_n$を$13$で割った余りに等しいことを示せ.
(2)$a_1,\ a_2,\ \cdots,\ a_6$を求めよ.
(3)以下の$3$条件を満たす自然数$N$をすべて求めよ.
(i) $N$を十進法で表示したとき$6$桁となる.
(ii) $N$を十進法で表示して,最初と最後の桁の数字を取り除くと$2016$となる.
(iii) $N$は$13$で割り切れる.