タグ「記号」の検索結果

2ページ目:全44問中11問~20問を表示)
信州大学 国立 信州大学 2014年 第3問
次の各問いに答えよ.

(1)$3$つのベクトル$\overrightarrow{a}=(2,\ 1,\ 1)$,$\overrightarrow{b}=(2,\ s,\ t)$,$\overrightarrow{c}=(p,\ q,\ 2)$が次の条件をみたすような,$s,\ t,\ p,\ q$の値を求めよ.

(i) $|\overrightarrow{a}|=|\overrightarrow{b}|$
(ii) $\overrightarrow{a}$と$\overrightarrow{b}$のなす角は$60^\circ$
(iii) $\overrightarrow{c}$は$\overrightarrow{a}$と$\overrightarrow{b}$の両方に直交する.

(2)$n$を$0$以上の整数とする.$n+1$個の自然数$2^0,\ 2^1,\ \cdots,\ 2^n$の中に,最上位の桁の数字が$1$であるものはいくつあるか.ただし,$x$を超えない最大の整数を表す記号$[x]$を用いて解答してよい.

注:例えば$2014$の最上位の桁の数字は$2$であり,$14225$の最上位の桁の数字は$1$である.
獨協大学 私立 獨協大学 2014年 第1問
次の設問の空欄を,あてはまる数値や記号,式などで埋めなさい.

(1)$2$次関数$y=x^2-6x+7$のグラフは$y=x^2+2x+2$のグラフを,$x$軸方向に$[$1$]$,$y$軸方向に$[$2$]$だけ平行移動したものである.
(2)次の式の分母を有理化せよ.
\[ (ⅰ) \frac{\sqrt{3}}{2-\sqrt{3}}=[$3$] \qquad (ⅱ) \frac{5 \sqrt{6}+\sqrt{2}}{\sqrt{6}+\sqrt{2}}=[$4$] \]
(3)$2$点$\mathrm{A}(-1,\ 2)$,$\mathrm{B}(5,\ 2)$を結ぶ線分$\mathrm{AB}$を$2:1$に内分する点$\mathrm{C}([$5$],\ [$6$])$を通り,線分$\mathrm{AB}$に垂直な直線の方程式は$[$7$]$と表される.
(4)数列$\{a_n\}$が$2,\ 3,\ 7,\ 14,\ 24,\ \cdots$のように与えられている.その階差数列を$\{b_n\}$とする.このとき,$b_1=[$8$]$,$b_2=[$9$]$であり,数列$\{b_n\}$の一般項は$b_n=[$10$]$と表される.よって,数列$\{a_n\}$の一般項は$a_n=[$11$]$となる.
(5)$x+y=20$,$x>0$,$y>0$であるとき,$\log_{\frac{1}{10}}x+\log_{\frac{1}{10}}y$の最小値は$[$12$]$である.
(6)各辺の長さが$\mathrm{AB}=1$,$\mathrm{BC}=2$,$\mathrm{CA}=k$である$\triangle \mathrm{ABC}$の面積は,$k=[$13$]$のとき最大値$[$14$]$をとる.
(7)$2$つのベクトル$\overrightarrow{x}=(a,\ b)$,$\overrightarrow{y}=(1,\ c)$について,$\overrightarrow{x} \perp \overrightarrow{y}$,$|\overrightarrow{x}-\overrightarrow{y}|=2$,$abc=-1$を満たす実数$a,\ b,\ c$の組合せは$[$15$]$通り存在する.また,このうち$a+b+c$の最小値は$[$16$]$となる.
(8)$2$人の男性$\mathrm{A}$,$\mathrm{B}$と$2$人の女性$\mathrm{a}$,$\mathrm{b}$がいる.この$4$人は無作為に異性を$1$人ずつ選ぶ.このとき,男性が選んだ女性がその男性を選べば,その男女をペアとする.たとえば,男性$\mathrm{A}$が女性$\mathrm{a}$を選び,女性$\mathrm{a}$も男性$\mathrm{A}$を選べば,その男女はペアとなる.このとき,ペアが全くできない確率は$[$17$]$,ペアがちょうど$1$組だけできる確率は$[$18$]$,ペアが$2$組できる確率は$[$19$]$である.
産業医科大学 私立 産業医科大学 2014年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)実数$x$の関数$f(x)=|\sin 2x+2 \sin x+2 \cos x|$の最大値は$[ア]$である.
(2)行列$A=\left( \begin{array}{cc}
\cos \theta & -2 \sin \theta \\
\displaystyle\frac{1}{2} \sin \theta & \cos \theta
\end{array} \right)$が$0<\theta<\pi$の範囲で$A^5=A^2$を満たすとき,実数$\theta$の値は$[イ]$である.
(3)定積分$\displaystyle \int_0^{-1} \frac{x^2-1}{x^2+1} \, dx$の値は$[ウ]$である.
(4)$n$をある自然数とする.実数$x$に対して,方程式$7 \sin^{8n} x+x=0$の解の個数は$[エ]$である.
(5)$\displaystyle 0<a<\frac{1}{4}$とする.座標平面において,方程式$\displaystyle -4ax+\sqrt{(x+a)^2+y^2}=\frac{1}{4}$で表される曲線が囲む図形の面積は$[オ]$である.
(6)$x+y+z+w=20$を満たす正の整数$x,\ y,\ z,\ w$の組は全部で$[カ]$個である.
(7)$7$つの実数$\displaystyle \frac{1}{2}$,$\sqrt{\pi}$,$\sqrt{3}$,$\displaystyle \frac{\pi^2}{8}$,$\displaystyle \sin \frac{\pi}{8}$,$\displaystyle \cos \frac{\pi}{8}$,$\displaystyle \tan \frac{\pi}{8}$を小さい方から順に並べたものを$A<B<C<D<E<F<G$とする.このとき実数$A^2$の値は$[キ]$であり,$E^2-F^2+G^2$の値は$[ク]$である.
中京大学 私立 中京大学 2014年 第1問
以下の各問で,$[ ]$にあてはまる数値または記号を求めよ.

(1)放物線$y=ax^2+bx+c (a>0)$が点$(0,\ 9)$を通るとき,
\[ c=[ア] \]
である.さらに,この放物線が点$(3,\ 3)$を通り,放物線の頂点が直線$16x-4y=29$上にあるとき,
\[ (a,\ b)=([イ],\ -[ウ]) \ \text{または} \ \left( \frac{[エ][オ]}{[カ]},\ -\frac{[キ][ク]}{3} \right) \]
である.
(2)$\mathrm{AB}=\mathrm{AC}=2$,$\angle \mathrm{BAC}={90}^\circ$である$\triangle \mathrm{ABC}$の内接円の半径は
\[ [ア]-\sqrt{2} \]
である.また,この内接円に外接し,辺$\mathrm{AB}$,辺$\mathrm{AC}$に接する円の半径は
\[ [イ][ウ]-[エ] \sqrt{2} \]
である.
(3)初項が$a$($a$は自然数),公差が$4$の等差数列$\{a_n\}$と,$a_n$を$9$で割った余りの数列$\{b_n\}$があり,$\displaystyle S_n=\sum_{k=1}^n b_k$とする.$a=1$とするとき,$S_n>2014$となる最小の$n$は
\[ [ア][イ][ウ] \]
であり,
\[ S_{[ア][イ][ウ]}=20 [エ][オ] \]
である.また,$S_n$がちょうど$2014$となる$a$の最小値は
\[ [カ] \]
である.
(4)関数$\displaystyle f(\theta)=2(\sin \theta+\cos \theta)^3-9(\sin \theta+\cos \theta) \left( -\frac{\pi}{4} \leqq \theta \leqq \frac{\pi}{4} \right)$は$\displaystyle \theta=\frac{\pi}{6}$のとき,
\[ f \left( \frac{\pi}{6} \right)=-[ア]-[イ] \sqrt{[ウ]} \]
となる.また,
$\displaystyle \theta=\frac{\pi}{[エ][オ]}$のとき,最小値$-[カ] \sqrt{[キ]}$

をとり,

$\displaystyle \theta=-\frac{\pi}{[ク]}$のとき,最大値$[ケ]$

をとる.
武庫川女子大学 私立 武庫川女子大学 2014年 第1問
次の空欄$[$1$]$~$[$24$]$にあてはまる数字を記入せよ.ただし,空欄$[$21$]$には,$+$または$-$の記号が入る.

(1)$a_1=m$(ただし,$m>0$),$a_{n+1}-a_n=-4$(ただし,$n$は自然数)で定められる数列$\{a_n\}$がある.
$a_n=m-[$1$](n-[$2$])$であり,
$S_n=\sum_{k=1}^n a_k$とすると,$n$が$\displaystyle \frac{m+[$3$]}{[$4$]}$に最も近い整数であるとき,$S_n$は最大値をとる.
したがって,ある$m$の値について,$S_n$が,$n=10$で最大となるとき,とり得る$m$の値の範囲は$[$5$][$6$] \leqq m \leqq [$7$][$8$]$であり,$m=[$7$][$8$]$のとき,$S_{10}=[$9$][$10$][$11$]$である.
(2)$\angle \mathrm{AOB}$を直角とする直角三角形$\mathrm{OAB}$がある.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.線分$\mathrm{AB}$を$3:1$に内分する点を$\mathrm{P}$とし,$3:1$に外分する点を$\mathrm{Q}$とし,$\mathrm{BP}=1$とする.

(i) $\displaystyle \overrightarrow{\mathrm{OP}}=\frac{[$12$]}{[$13$]} \overrightarrow{a}+\frac{[$14$]}{[$13$]} \overrightarrow{b}$,$\displaystyle \overrightarrow{\mathrm{OQ}}=-\frac{[$15$]}{[$16$]} \overrightarrow{a}+\frac{[$17$]}{[$16$]} \overrightarrow{b}$であり,
$|\overrightarrow{\mathrm{OQ}}|=[$18$]|\overrightarrow{\mathrm{OP}}|$である.
(ii) $\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{AB}}=0$であるとき,$|\overrightarrow{b}|=[$19$]$であり,$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OQ}}=[$20$]$である.
(iii) $\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{AB}}=0$であるとき,$\overrightarrow{\mathrm{OR}}=2 \overrightarrow{b}$,$\overrightarrow{\mathrm{OR}}$と$\overrightarrow{\mathrm{RA}}$のなす角を$\theta$とすると,
$\displaystyle \cos \theta=[$21$] \frac{[$22$] \sqrt{[$23$]}}{[$24$]}$である.
武庫川女子大学 私立 武庫川女子大学 2014年 第2問
次の問いに答えよ.

(1)次の不等式の空欄$[$25$]$~$[$28$]$にあてはまるものを下の解答群から選べ.
\[ [$25$]<[$26$]<\sqrt[3]{7}<[$27$]<[$28$] \]
解答群 \quad $\nagamaruichi \ \tan {50}^\circ \qquad \nagamaruni \ \sqrt{5} \qquad \nagamarusan \ \sqrt[4]{14} \qquad \nagamarushi \ \sin {100}^\circ$
(2)次の空欄$[$29$]$~$[$38$]$にあてはまる数字を入れよ.ただし,空欄$[$29$]$,$[$32$]$には$+$,$-$,$\pm$いずれかの記号が入る.

(i) 方程式$\log_2 (x+7)+\log_2 (3x+2)=\log_2 6$の解は
\[ x=\frac{\kakkofour{$29$}{$30$}{$31$}{$32$} \sqrt{[$33$][$34$][$35$]}}{[$36$]} \]
である.
(ii) $\log_2 3 \cdot \log_4 8 \cdot \log_9 16=[$37$][$38$]$である.
武庫川女子大学 私立 武庫川女子大学 2014年 第3問
次の空欄$[$39$]$~$[$60$]$にあてはまる数字を入れよ.ただし,空欄$[$41$]$,$[$44$]$,$[$47$]$,$[$51$]$には$+$または$-$の記号が入る.

(1)$\displaystyle \lim_{x \to 2} \frac{5x^2+5x-30}{x-2}=[$39$][$40$]$である.
(2)$2$次関数$y=f(x)$のグラフは原点と点$\displaystyle \left( 1,\ \frac{17}{4} \right)$を通る.また,$x=2$において傾き$8$の接線をもつ.このとき,$f(x)$の最小値は$\displaystyle [$41$] \frac{[$42$]}{[$43$]}$である.
(3)$2$次関数$f(x)=ax^2+bx+c$(ただし,$a,\ b,\ c$は定数)がある.すべての実数$x$について$3f(x)+4f^\prime(x)=-2x^2+5x+7$が常に成立するとき,
\[ a=[$44$] \frac{[$45$]}{[$46$]},\quad b=[$47$] \frac{[$48$][$49$]}{[$50$]},\quad c=[$51$] \frac{[$52$][$53$]}{[$54$][$55$]} \]
である.
(4)$2$つの関数$\displaystyle f(x)=x-\frac{3}{a}$および$\displaystyle g(x)=ax^2+7x+\frac{6}{a}$がある(ただし,$a$は正の定数).$xy$平面上の$4$つのグラフ$y=f(x)$,$y=g(x)$,$x=0$および$x=1$で囲まれる図形の面積は$a=[$56$] \sqrt{[$57$]}$のとき最小値$[$58$]+[$59$] \sqrt{[$60$]}$をとる.
武庫川女子大学 私立 武庫川女子大学 2014年 第2問
次の空欄$[$19$]$~$[$42$]$にあてはまる数字を入れよ.ただし,空欄$[$19$]$,$[$21$]$には$+$または$-$の記号が入る.

(1)原点$\mathrm{O}$を中心とする半径$5$の円と直線$y=-2x$との交点のうち,$y$座標が正となる点を$\mathrm{A}$とする.線分$\mathrm{OA}$が$x$軸の正の向きとなす角を$\theta (0^\circ<\theta<{180}^\circ)$とする.

(i) $\tan \theta=[$19$][$20$]$であり,
$\cos \theta=[$21$] \frac{\sqrt{[$22$]}}{[$23$]}$であり,

点$\mathrm{A}$の座標は$\displaystyle \left( -\sqrt{[$24$]},\ [$25$] \sqrt{[$26$]} \right)$である.
(i) 点$(3 \sqrt{5},\ 0)$を$\mathrm{B}$とするとき,$\mathrm{AB}=[$27$][$28$]$であり,三角形$\mathrm{OAB}$の外接円の半径は$\displaystyle \frac{[$29$] \sqrt{[$30$]}}{[$31$]}$である.

(2)下図のように半径$r$の扇形$\mathrm{ABC}$があり,$\angle \mathrm{CAB}={90}^\circ$とする.直線$\mathrm{CA}$の延長線上に点$\mathrm{D}$をとり,$\displaystyle \sin \angle \mathrm{ADB}=\frac{1}{5}$とする.この扇形$\mathrm{ABC}$と三角形$\mathrm{ADB}$の両方からなる図形を直線$\mathrm{CD}$を軸として回転させてできる立体の表面積を$S$,体積を$V$とする.

(i) $\displaystyle r=\frac{3}{2}$のときの$S$は,$r=1$のときの$\displaystyle \frac{[$32$]}{[$33$]}$倍であり,$V$は$r=1$のときの$\displaystyle \frac{[$34$][$35$]}{[$36$][$37$]}$倍である.
(ii) $r=1$のとき,$S=[$38$] \pi$であり,
$\displaystyle V=\frac{[$39$]}{[$40$]} \left( [$41$]+\sqrt{[$42$]} \right) \pi$である.
(図は省略)
和歌山県立医科大学 公立 和歌山県立医科大学 2014年 第2問
実数$x$に対して,$x$以下で最大の整数を$x$の整数部分といい,$[x]$で表す.自然数$n$に対して,数列$\{a_n\}$を$a_n=[n\pi]$と定め,また数列$\{b_n\}$を,$b_1=b_2=b_3=0$,$n \geqq 4$のときは
\[ a_k<n \leqq a_{k+1} \quad \text{となる} n \text{に対して,} \quad b_n=k \]
と定める.ただし,$\pi$は円周率を表す.

(1)$b_4,\ b_5,\ b_7,\ b_{10}$を求めよ.
(2)自然数$p,\ q$に対して,$a_p<q$ならば$p\pi<q$であることを示せ.
(3)数列$\{b_n\}$の一般項を$n$の式で表せ.このとき,必要なら上記の整数部分を表す記号を用いてよい.
獨協大学 私立 獨協大学 2013年 第1問
次の設問の空欄を,あてはまる数値や記号,式などで埋めなさい.

(1)塔の高さを測るために,塔から水平に$380 \; \mathrm{m}$離れた地点で塔の先端の仰角を測ったところ,$59^\circ$であった.目の高さを$1.6 \; \mathrm{m}$とすると,塔の高さは$[ ] \, \mathrm{m}$である.(小数第$3$位を四捨五入すること.また,$\sin 59^\circ=0.8572$,$\cos 59^\circ=0.5150$,$\tan 59^\circ=1.6643$とする.)
(2)連立不等式$8x-12<4(x+2)<6x$を解くと,$[ ]$である.
(3)点$(0,\ a)$から円$x^2+y^2=1$に引いた$2$本の接線の傾きを$a$を用いて表すと,$[ ]$と$[ ]$である.(ただし,$|a|>1$とする.)
(4)ベクトル$\overrightarrow{a}=(1,\ 2,\ 1)$とベクトル$\overrightarrow{b}=(2,\ 1,\ -1)$のなす角を$\theta_1 (0^\circ \leqq \theta_1 \leqq 180^\circ)$とし,ベクトル$\overrightarrow{c}=(1,\ -1,\ 2)$とベクトル$\overrightarrow{d}=(-4,\ 2,\ 3)$のなす角を$\theta_2 (0^\circ \leqq \theta_2 \leqq 180^\circ)$とする.このとき,$\theta_1$と$\theta_2$の大小関係は$[ ]$である.
(5)次の和を求めよ.

(i) $1 \cdot 1+2 \cdot 3+3 \cdot 5+\cdots +n \cdot (2n-1)=[ ]$
(ii) $1 \cdot 1^2+2 \cdot 3^2+3 \cdot 5^2+\cdots +n \cdot (2n-1)^2=[ ]$

(6)次の値を求めよ.
$(ⅰ) \sqrt[6]{64}=[ ] \qquad (ⅱ) \sqrt[5]{0.00001}=[ ]$
$(ⅲ) \sqrt[3]{216}=[ ] \qquad \tokeishi \sqrt[3]{\sqrt{729}}=[ ]$
(7)$2$次方程式$x^2+2kx+(2k+3)=0$の$2$つの解を$\alpha,\ \beta$とするとき,$0<\alpha<1$,$2<\beta<3$となるような定数$k$の値の範囲は,$[ ]$である.
(8)赤色の球が$2$個,青色の球が$3$個,黄色の球が$4$個入った袋がある.この袋から同時に$3$個の球を取り出すとき,取り出した球に赤色の球が含まれない確率は$[ ]$であり,取り出した球の色が$2$種類である確率は$[ ]$である.
スポンサーリンク

「記号」とは・・・

 まだこのタグの説明は執筆されていません。