タグ「計算」の検索結果

3ページ目:全152問中21問~30問を表示)
会津大学 公立 会津大学 2016年 第1問
次の問いに答えよ.

(1)次の計算をせよ.ただし,$i$は虚数単位である.


(i) $\displaystyle \int_1^e x^9 \log x \, dx=[イ]$

(ii) $\displaystyle \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \cos \left( \frac{k\pi}{2n} \right)=[ロ]$

(iii) $(-1+i)^{21}=[ハ]$


(2)$1333$と$1147$の最大公約数は$[ニ]$である.
(3)方程式$8^x+4^x=9 \times 2^x+9$の解は$x=[ホ]$である.
(4)$0 \leqq x \leqq \pi$において関数$y=2 \sin^2 x+2 \cos x+1$は$x=[ヘ]$のとき,最大値$[ト]$をとる.
(5)$\triangle \mathrm{ABC}$において,$|\overrightarrow{\mathrm{AC|}}=6$,$|\overrightarrow{\mathrm{BC|}}=\sqrt{13}$,$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=24$であるとき,$|\overrightarrow{\mathrm{AB|}}=[チ]$であり,$\triangle \mathrm{ABC}$の面積は$[リ]$である.
静岡大学 国立 静岡大学 2015年 第3問
$e$を自然対数の底とし,$0 \leqq x \leqq e$とする.関数$\displaystyle f(x)=\int_0^2 |e^t-x^2| \, dt$について,次の問いに答えよ.

(1)定積分を計算し,$f(x)$を$x$を用いて表せ.
(2)$f(x)$の最大値と最小値を求めよ.また,それらの値をとるときの$x$の値もそれぞれ求めよ.
静岡大学 国立 静岡大学 2015年 第3問
$e$を自然対数の底とし,$0 \leqq x \leqq e$とする.関数$\displaystyle f(x)=\int_0^2 |e^t-x^2| \, dt$について,次の問いに答えよ.

(1)定積分を計算し,$f(x)$を$x$を用いて表せ.
(2)$f(x)$の最大値と最小値を求めよ.また,それらの値をとるときの$x$の値もそれぞれ求めよ.
香川大学 国立 香川大学 2015年 第3問
$2$次関数$y=f(x)$のグラフは,点$\displaystyle \left( \frac{3}{2}a, -a \right)$を頂点とし,点$(a,\ 0)$を通る放物線である.ただし,$a \neq 0$とする.このとき,次の問に答えよ.

(1)$2$次関数$y=f(x)$を$a$を用いて表せ.
(2)$a>0$とするとき,放物線$y=f(x)$と$x$軸で囲まれた部分の面積$S(a)$を,積分を計算することによって求めよ.
(3)$S(2^n)>7^{10}$となる最小の自然数$n$を求めよ.必要であれば,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$,$\log_{10}7=0.8451$を用いてもよい.
香川大学 国立 香川大学 2015年 第4問
$2$次関数$y=f(x)$のグラフは,点$\displaystyle \left( \frac{3}{2}a, -a \right)$を頂点とし,点$(a,\ 0)$を通る放物線である.ただし,$a \neq 0$とする.このとき,次の問に答えよ.

(1)$2$次関数$y=f(x)$を$a$を用いて表せ.
(2)$a>0$とするとき,放物線$y=f(x)$と$x$軸で囲まれた部分の面積$S(a)$を,積分を計算することによって求めよ.
(3)$S(2^n)>7^{10}$となる最小の自然数$n$を求めよ.必要であれば,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$,$\log_{10}7=0.8451$を用いてもよい.
香川大学 国立 香川大学 2015年 第4問
$2$次関数$y=f(x)$のグラフは,点$\displaystyle \left( \frac{3}{2}a, -a \right)$を頂点とし,点$(a,\ 0)$を通る放物線である.ただし,$a \neq 0$とする.このとき,次の問に答えよ.

(1)$2$次関数$y=f(x)$を$a$を用いて表せ.
(2)$a>0$とするとき,放物線$y=f(x)$と$x$軸で囲まれた部分の面積$S(a)$を,積分を計算することによって求めよ.
(3)$S(2^n)>7^{10}$となる最小の自然数$n$を求めよ.必要であれば,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$,$\log_{10}7=0.8451$を用いてもよい.
大分大学 国立 大分大学 2015年 第2問
方程式$x^4+x^2+1=0$の解で,実部と虚部がともに正のものを$x_1$,実部が負で虚部が正のものを$x_2$,実部と虚部がともに負のものを$x_3$,実部が正で虚部が負のものを$x_4$とする.

(1)この方程式を解きなさい.
(2)${x_1}^k (k=1,\ 2,\ \cdots,\ 6)$を計算しなさい.
(3)与方程式の解$x_i$と自然数$n$に対して,${x_i}^{4n}+{x_i}^{2n}+1 (i=1,\ 2,\ 3,\ 4)$を求めなさい.
名古屋大学 国立 名古屋大学 2015年 第3問
次の問に答えよ.

(1)$\displaystyle \left( \sqrt{9+2 \sqrt{17}}+\sqrt{9-2 \sqrt{17}} \right)^2$を計算し,$2$重根号を用いない形で表せ.
(2)$\alpha=\sqrt{13}+\sqrt{9+2 \sqrt{17}}+\sqrt{9-2 \sqrt{17}}$とするとき,整数係数の$4$次多項式$f(x)$で$f(\alpha)=0$となるもののうち,$x^4$の係数が$1$であるものを求めよ.
(3)$8$つの実数
\[ \pm \sqrt{13} \pm \sqrt{9+2 \sqrt{17}} \pm \sqrt{9-2 \sqrt{17}} \]
(ただし,複号$\pm$はすべての可能性にわたる)の中で,$(2)$で求めた$f(x)$に対して方程式$f(x)=0$の解となるものをすべて求めよ.
宮崎大学 国立 宮崎大学 2015年 第2問
初項$a_1=0$と漸化式
\[ a_{n+1}=(1-r) r^{n-1}+r^2a_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって与えられる数列$\{a_n\}$について,次の各問に答えよ.ただし,$r \neq 0$,$r \neq 1$とする.

(1)$a_2,\ a_3,\ a_4$を,$r$を用いてそれぞれ表せ.
(2)第$n$項$a_n$を推測して,それが正しいことを,数学的帰納法を用いて証明せよ.
(3)$\displaystyle \sum_{k=1}^n a_k$を計算し,$r,\ n$を用いて表せ.
宮崎大学 国立 宮崎大学 2015年 第5問
初項$a_1=0$と漸化式
\[ a_{n+1}=(1-r)r^{n-1}+r^2a_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって与えられる数列$\{a_n\}$について,次の各問に答えよ.ただし,$r \neq 0$,$r \neq 1$とする.

(1)$a_2,\ a_3,\ a_4$を,$r$を用いてそれぞれ表せ.
(2)第$n$項$a_n$を推測して,それが正しいことを,数学的帰納法を用いて証明せよ.
(3)$\displaystyle \sum_{k=1}^n a_k$を計算し,$r,\ n$を用いて表せ.
スポンサーリンク

「計算」とは・・・

 まだこのタグの説明は執筆されていません。