タグ「計算」の検索結果

13ページ目:全152問中121問~130問を表示)
埼玉大学 国立 埼玉大学 2011年 第2問
曲線$C:(x-2)^2+y^2=1$と直線$\ell: y=(\tan \theta)x$を考える.ただし$\displaystyle 0 \leqq \theta < \frac{\pi}{2}$とする.$f(\theta)$を次の(ア),(イ),(ウ)のように定める.

\mon[(ア)] $C$と$\ell$の共有点の個数が1のとき,$f(\theta)$は共有点と原点の距離とする.
\mon[(イ)] $C$と$\ell$の共有点の個数が2以上のとき,$f(\theta)$は共有点と原点の距離のうち最も小さいものとする.
\mon[(ウ)] $C$と$\ell$が共有点を持たないとき,$f(\theta)=0$とする.

さらに,$C$と$\ell$が共有点を持つ$\theta$の最大値を$\alpha$とする.次の問いに答えよ.

(1)$\alpha$を求めよ.
(2)$C$と$\ell$が共有点を持つとき,$f(\theta)$を求めよ.
(3)次の積分を計算せよ.
\[ \int_0^\alpha \{f(\theta)\}^2 \, d\theta \]
電気通信大学 国立 電気通信大学 2011年 第2問
$x>0$において関数
\[ f(x)=\sin (\log x) \]
を考える.\\
方程式$f(x)=0$の$0<x \leqq 1$における解を大きいほうから順にならべて,
\[ 1=\alpha_1>\alpha_2>\alpha_3>\cdots > \alpha_n>\alpha_{n+1} > \cdots \]
とする.以下の問いに答えよ.ただし,$\log x$は$e$を底とする自然対数とする.なお,不定積分の計算においては積分定数を省略してもよい.

(1)不定積分$I(x),\ J(x)$をそれぞれ
\[ I(x)=\int e^x \sin x \, dx,\quad J(x)=\int e^x \cos x \, dx \]
とおくとき,$I(x)+J(x),\ I(x)-J(x)$を求めよ.
(2)不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(3)$\alpha_n \ (n=1,\ 2,\ 3,\ \cdots)$を求めよ.
(4)区間$\alpha_{n+1} \leqq x \leqq \alpha_n$において,曲線$y=f(x)$と$x$軸とで囲まれる部分の面積を$S_n \ (n=1,\ 2,\ 3,\ \cdots)$とする.$S_n$を求めよ.
(5)無限級数$\displaystyle \sum_{n=1}^\infty S_n$の和$S$を求めよ.
鹿児島大学 国立 鹿児島大学 2011年 第5問
次の行列$A$を考える.
\[ A=\left( \begin{array}{cc}
-2 & 2 \\
-2 & 0
\end{array} \right) \]
次の各問いに答えよ.

(1)$2 \times 2$行列$X$に対して,$E-X$が逆行列を持つとき
\[ E+X+X^2+\cdots +X^n=(E-X^{n+1})(E-X)^{-1} \]
が成立することを示せ.ただし,$E$は$2 \times 2$の単位行列である.
(2)$A^2$と$A^3$を計算せよ.さらに$A^{100}$と$A^{101}$を計算せよ.
(3)$E+A+A^2+\cdots +A^{100}$を計算せよ.
京都教育大学 国立 京都教育大学 2011年 第1問
次の計算をせよ.ただし,$i$は虚数単位とする.

(1)$(\sqrt{3}+i)^3$
(2)$(\sqrt{3}+i)^{12}$
西南学院大学 私立 西南学院大学 2011年 第4問
以下の計算をせよ.

(1)$\log_{10}50^{6-\log_2 1024}=[マ] \log_{10}2-[ミ]$
(2)$\sqrt[3]{54}+\sqrt[3]{-250}-\sqrt[3]{-16}=[ム]$
(3)$a$は正の実数とする.$\displaystyle a^x-\frac{1}{a^x}=\sqrt{5}$のとき$\displaystyle a^x+\frac{1}{a^x}=[メ]$である.
西南学院大学 私立 西南学院大学 2011年 第5問
以下の問に答えよ.

(1)$25^3$を計算して,その答えを$A \times 10^3+625$の形に表したとき,$A$の値を求めよ.ただし,$A$は$0$以上の整数とする.
(2)$2$以上の自然数$n$に対して,$25^n$の下$3$桁は$625$になることを,数学的帰納法を用いて証明せよ.
(3)$25^{25}$の下$4$桁の数値を求めよ.
西南学院大学 私立 西南学院大学 2011年 第5問
年利率$0.05$,$1$年ごとの複利で借金をする.今年の年度初めに$1000$万円を借りた.$1$年後(今年の年度末)から返済を開始し,毎年,年度末に同じ金額を返済するものとする.このとき,以下の問に答えよ.ただし,$1.05^7=1.407$,$1.05^8=1.477$,$1.05^9=1.551$,$1.05^{10}=1.629$として計算せよ.

(注)複利での借金とは次のようなものである.ある年の年度初めに年利率$r$で$A$円を借りると,$1$年後の借金は$A(1+r)$円になる.ここで$B$円を返すと,$1$年目の年度末の借金残額は$\{A(1+r)-B\}$円になるから,$2$年後の借金は$\{A(1+r)-B\}(1+r)$円になる.

(1)毎年,年度末に$100$万円を返済するとき,$1$年目の年度末の借金残額はいくらになるか.
(2)$10$年目の年度末に返済を完了するためには,毎年,いくらずつ返済すればよいか.ただし,最後の答は,一万円未満を切り捨てて,一万円までの概数で答えよ.
(3)毎年,年度末に$100$万円を返済するとき,借金残額が初めて$500$万円以下となるのは何年目の年度末か.
神奈川大学 私立 神奈川大学 2011年 第1問
次の空欄を適当に補え.

(1)円$x^2+2x+y^2-6y-6=0$の半径は$[ア]$であり,中心の座標は$[イ]$である.

(2)$\displaystyle 2 \log_84+\log_3 \sqrt{15}-\frac{1}{\log_59}$を計算すると$[ウ]$である.

(3)$0 \leqq x<2\pi$とする.方程式$\cos 2x-5 \cos x+3=0$を解くと,$x=[エ],\ [オ]$である.
(4)$0,\ 1,\ 2,\ 3,\ 4$の$5$つの数字から同じ数字を繰り返し使わずに作れる$3$桁の偶数は全部で$[カ]$個ある.
神戸薬科大学 私立 神戸薬科大学 2011年 第1問
以下の文中の$[ ]$の中にいれるべき数または式を求めて記入せよ.

(1)$(x+1)(y+1)(xy+1)+xy$を因数分解すると$[ ]$である.
(2)$0 \leqq x \leqq \pi$のとき,$2 \sin x=1$を満たす$x$は$x=[ ]$である.
(3)$L=\log_a b \times \log_b c \times \log_c a$の値を計算すると$L=[ ]$である.
(4)$|m^2-30|<20$を満たす整数$m$は全部で$[ ]$個ある.
(5)$4$次方程式$x^4+ax^3+(a+3)x^2+16x+b=0$の解のうち$2$つは$1$と$2$である.このとき,$a=[ ]$,$b=[ ]$であり,残りの解は$[ ]$と$[ ]$である.
神戸薬科大学 私立 神戸薬科大学 2011年 第2問
以下の文中の$[ ]$の中にいれるべき数または式を求めて記入せよ.

(1)$\displaystyle S=\sum_{n=1}^{18} (-1)^n \log_{10}(n+1)(n+2)$の値を計算すると$S=[ ]$である.
(2)$a>0,\ b>0,\ a+b=1$のとき,$\displaystyle \left( 2+\frac{1}{a} \right) \left( 2+\frac{1}{b} \right)$の最小値は$[ ]$である.
(3)$2$次方程式$x^2+ax+a^2-4=0$が正の解と負の解を$1$つずつ持つときの定数$a$の値の範囲は,$[ ]<a<[ ]$である.
(4)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が$S_n=2a_n+2n-5$で与えられている.このとき,$a_1=[ ]$である.また,$a_{n+1}$を$a_n$を用いて表すと$a_{n+1}=[ ]$である.
スポンサーリンク

「計算」とは・・・

 まだこのタグの説明は執筆されていません。