タグ「計算」の検索結果

12ページ目:全152問中111問~120問を表示)
安田女子大学 私立 安田女子大学 2012年 第1問
次の問いに答えよ.

(1)$\sqrt{0.5^2-0.4^2}$を計算せよ.
(2)放物線$y=x^2+4x-1$を点$(1,\ 2)$に関して対称移動した放物線の方程式を求めよ.
(3)循環小数$2.0 \dot{3}$を分数で表せ.
(4)半径がそれぞれ$1$である$2$つの円が,一方の円周上に他方の円の中心があるような位置で重なっている.このとき,$2$つの円が重なっている部分の面積を求めよ.なお,円周率は$\pi$とする.
中央大学 私立 中央大学 2012年 第1問
次の問題文の空欄にもっとも適する答えを解答群から選び,その記号をマークせよ.ただし,同じ記号を$2$度以上用いてもよい.

$a,\ b,\ r,\ k$は$a>b>0$,$r>0$,$k>0$を満たす定数とする.
座標平面の相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が円$X^2+Y^2=r^2$の上を動くとき,$\triangle \mathrm{ABC}$の面積$S_1$の最大値は次のようにして求められる.まず,$2$点$\mathrm{B}$,$\mathrm{C}$を固定して点$\mathrm{A}$を動かすとき,その三角形の高さに注意すれば,面積が最大となるのは,$\mathrm{AB}=\mathrm{AC}$であるような二等辺三角形のときである.したがって,この円に内接する二等辺三角形のうちで面積が最大のものを見つければよい.そこで,$\mathrm{A}(0,\ r)$,$\mathrm{B}(-r \cos \theta,\ r \sin \theta)$,$\mathrm{C}(r \cos \theta,\ r \sin \theta)$ $\displaystyle \left( -\frac{\pi}{2}<\theta<\frac{\pi}{2} \right)$とすれば$S_1$の最大値は$\sin \theta=[ア]$のとき$S_1=[イ] r^2$であることがわかる.
点$\mathrm{P}(x,\ y)$の$y$座標を$k$倍した点を$\mathrm{P}^\prime(x,\ ky)$とおく.相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標を$\mathrm{A}(x_1,\ y_1)$,$\mathrm{B}(x_2,\ y_2)$,$\mathrm{C}(x_3,\ y_3)$としたとき,$\triangle \mathrm{ABC}$の面積$S$は内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$を用いて計算すると$[ウ]$と表される.したがって,点$\mathrm{A}^\prime(x_1,\ ky_1)$,$\mathrm{B}^\prime(x_2,\ ky_2)$,$\mathrm{C}^\prime(x_3,\ ky_3)$のなす三角形の面積を$S_2$とおくと,$S_2$は$S$の$[エ]$倍である.
点$\mathrm{P}(x,\ y)$は楕円$\displaystyle E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$の上を動く点とする.$\displaystyle k=\frac{a}{b}$であるとき,点$\mathrm{P}^\prime(x,\ ky)$は原点を中心とする半径$[オ]$の円上を動く.したがって,相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が楕円$E$上を動くとき,$\triangle \mathrm{ABC}$の面積の最大値は$a,\ b$を用いて$[カ]$と表される.

\begin{itemize}
ア,イの解答群
\[ \begin{array}{lllll}
\marua -\displaystyle\frac{1}{2} \phantom{AAA} & \marub -\displaystyle\frac{1}{3} \phantom{AAA} & \maruc \displaystyle\frac{1}{3} & \marud \displaystyle\frac{1}{2} \phantom{AAA} & \marue \displaystyle\frac{16}{9} \\ \\
\maruf -\displaystyle\frac{\sqrt{3}}{2} & \marug -\displaystyle\frac{\sqrt{3}}{3} & \maruh \displaystyle\frac{\sqrt{3}}{4} & \marui \displaystyle\frac{\sqrt{3}}{2} & \maruj \displaystyle\frac{3 \sqrt{3}}{4} \\ \\
\maruk \displaystyle\frac{8 \sqrt{2}}{9} & \marul \displaystyle\frac{2+\sqrt{3}}{4} & \marum \displaystyle\frac{\sqrt{2}(1+\sqrt{3})}{3} & &
\end{array} \]
ウの解答群

\mon[$\marua$] $\displaystyle |(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)|$

\mon[$\marub$] $\displaystyle\frac{1}{2} |(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)|$

\mon[$\maruc$] $\displaystyle |(x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2-y_1)|$

\mon[$\marud$] $\displaystyle\frac{1}{2} |(x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2-y_1)|$

\mon[$\marue$] $\displaystyle |(x_2-x_1)(y_3-y_1)+(x_3-x_1)(y_2-y_1)|$

\mon[$\maruf$] $\displaystyle\frac{1}{2} |(x_2-x_1)(y_3-y_1)+(x_3-x_1)(y_2-y_1)|$

\mon[$\marug$] $\displaystyle \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \sqrt{(x_3-x_1)^2+(y_3-y_1)^2}$
$\displaystyle -\{(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)\}$

\mon[$\maruh$] $\displaystyle\frac{1}{2} \biggl[ \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \sqrt{(x_3-x_1)^2+(y_3-y_1)^2}$
$\displaystyle -\{(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)\} \biggr]$

エの解答群
\[ \marua \frac{1}{k^3} \quad \marub \frac{1}{k^2} \quad \maruc \frac{1}{k} \quad \marud \frac{2}{k} \quad \marue \frac{k}{2} \quad \maruf k \quad \marug k^2 \quad \maruh k^3 \]
オの解答群
\[ \begin{array}{lllll}
\marua \displaystyle\frac{a}{2} \phantom{AAA} & \marub \displaystyle\frac{a^2}{4} \phantom{AAA} & \maruc a \phantom{AAA} & \marud a^2 \phantom{AAA} & \marue ab \\
\maruf \displaystyle\frac{b}{2} & \marug \displaystyle\frac{b^2}{4} & \maruh b & \marui b^2 & \maruj (ab)^2 \phantom{\frac{{[ ]}^2}{2}}
\end{array} \]
カの解答群
\[ \begin{array}{lllll}
\marua \displaystyle\frac{\sqrt{3}}{2}ab \phantom{AA} & \marub \displaystyle\frac{8 \sqrt{2}}{9} ab \phantom{AA} & \maruc \displaystyle\frac{\sqrt{3}}{4} ab \phantom{AA} & \marud \displaystyle\frac{16}{9}ab \phantom{AA} & \marue \displaystyle\frac{3 \sqrt{3}}{4} ab \\ \\
\maruf \displaystyle\frac{\sqrt{3}}{2} \frac{a^3}{b} & \marug \displaystyle\frac{8 \sqrt{2}}{9} \frac{a^3}{b} & \maruh \displaystyle\frac{\sqrt{3}}{4} \frac{a^3}{b} & \marui \displaystyle\frac{16}{9} \frac{a^3}{b} & \maruj \displaystyle\frac{3 \sqrt{3}}{4} \frac{a^3}{b}
\end{array} \]
\end{itemize}
久留米大学 私立 久留米大学 2012年 第8問
次の計算をすると,$\displaystyle \lim_{x \to 4} \frac{\sqrt{2x+1}-3}{\sqrt{x-2}-\sqrt{2}}=[$20$]$となる.
中央大学 私立 中央大学 2012年 第2問
次の問題文の空欄にもっとも適する答えを解答群から選び,その記号をマークせよ.ただし,同じ記号を$2$度以上用いてもよい.

$a$を$1$より大きい実数とする.$xy$平面において,$x$軸,$y$軸,直線$x=1$と曲線$y=a^x$で囲まれる部分の面積を近似的に計算したい.$n$を自然数とし,$k=1,\ 2,\ \cdots,\ n$とする.また,$f(x)$は$0 \leqq x \leqq 1$において$f(x)>0$を満たす連続関数とする.

(1)$4$点$\displaystyle \left( \frac{k-1}{n},\ 0 \right)$,$\displaystyle \left( \frac{k}{n},\ 0 \right)$,$\displaystyle \left( \frac{k}{n},\ f \left( \frac{k}{n} \right) \right)$,$\displaystyle \left( \frac{k-1}{n},\ f \left( \frac{k-1}{n} \right) \right)$を頂点にもつ台形の面積を$M_k$とする.このとき$M_k=[キ]$となる.とくに$f(x)=a^x$であれば,面積の和$S_n=M_1+M_2+\cdots +M_n$は$[ク]$となる.ここで,極限$\displaystyle \lim_{x \to 0} \frac{a^x-1}{x}=[ケ]$を用いると,$\displaystyle \lim_{n \to \infty} S_n=[コ]$と計算される.
(2)以下では,曲線$y=f(x)$は下に凸とする.
$3$点$\displaystyle \left( \frac{k-1}{n},\ f \left( \frac{k-1}{n} \right) \right)$,$\displaystyle \left( \frac{2k-1}{2n},\ f \left( \frac{2k-1}{2n} \right) \right)$,$\displaystyle \left( \frac{k}{n},\ f \left( \frac{k}{n} \right) \right)$を通る放物線を
\[ C_k:y=\alpha \left( x-\frac{2k-1}{2n} \right)^2+\beta \left( x-\frac{2k-1}{2n} \right)+\gamma \quad (\alpha,\ \beta,\ \gamma \text{は定数}) \]
とおく.$x$軸,直線$\displaystyle x=\frac{k-1}{n}$,直線$\displaystyle x=\frac{k}{n}$と放物線$C_k$で囲まれる部分の面積を$N_k$とおくとき,$N_k=[サ]$となる.とくに$f(x)=a^x$であれば,面積の和$N_1+N_2+\cdots N_n$は$[シ]$となる.
\begin{itemize}
ケ,コの解答群
\[ \begin{array}{lllll}
\marua e^a \phantom{AA} & \marub e^{-a} \phantom{AA} & \maruc \displaystyle\frac{e^a}{a-1} \phantom{AA} & \marud (a-1)e^a \phantom{AA} & \marue (a-1)e^{-a} \\ \\
\maruf \log a & \marug \displaystyle\frac{1}{\log a} & \maruh \displaystyle\frac{\log a}{a-1} & \marui \displaystyle\frac{a-1}{\log a} & \maruj (a-1) \log a
\end{array} \]
キ,サの解答群

\mon[$\marua$] $\displaystyle \frac{1}{n} \left\{ f \left( \frac{k-1}{n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\marub$] $\displaystyle \frac{1}{2n} \left\{ f \left( \frac{k-1}{n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\maruc$] $\displaystyle \frac{1}{3n} \left\{ f \left( \frac{k-1}{n} \right)+f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\marud$] $\displaystyle \frac{1}{4n} \left\{ f \left( \frac{k-1}{n} \right)+2f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\marue$] $\displaystyle \frac{1}{5n} \left\{ f \left( \frac{k-1}{n} \right)+3f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\maruf$] $\displaystyle \frac{1}{6n} \left\{ f \left( \frac{k-1}{n} \right)+4f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

ク,シの解答群
\[ \begin{array}{ll}
\marua \displaystyle\frac{(a^n-1) \sqrt{a}}{n(a-1)} \phantom{AA} & \marub \displaystyle\frac{a^{\frac{1}{2n}}(a-1)}{n(a^{\frac{1}{n}}-1)} \\ \\
\maruc \displaystyle\frac{(a+1)(a^n-1)}{n(a-1)} \phantom{AA} & \marud \displaystyle\frac{(a^{\frac{1}{n}}+1)(a-1)}{n(a^\frac{1}{n}-1)} \\ \\
\marue \displaystyle\frac{(a+1)(a^n-1)}{2n(a-1)} & \maruf \displaystyle\frac{(a^{\frac{1}{n}}+1)(a-1)}{2n(a^{\frac{1}{n}}-1)} \\ \\
\marug \displaystyle\frac{(a^{\frac{1}{n}}+a^{\frac{1}{2n}}+1)(a-1)}{n(a^\frac{1}{n}-1)} & \maruh \displaystyle\frac{(a^{\frac{1}{n}}+a^{\frac{1}{2n}}+1)(a-1)}{3n(a^\frac{1}{n}-1)} \\ \\
\marui \displaystyle\frac{(a^{\frac{1}{n}}+2a^{\frac{1}{2n}}+1)(a-1)}{4n(a^\frac{1}{n}-1)} & \maruj \displaystyle\frac{(a+3 \sqrt{a}+1)(a^n-1)}{5n(a-1)} \\ \\
\maruk \displaystyle\frac{(a^{\frac{1}{n}}+4a^{\frac{1}{2n}}+1)(a-1)}{6n(a^\frac{1}{n}-1)} &
\end{array} \]
\end{itemize}
安田女子大学 私立 安田女子大学 2012年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{6}}$を計算せよ.

(2)$x^3-x^2-4x+4$を因数分解せよ.
(3)$0^\circ<\theta<{60}^\circ$のとき,$\cos ({180}^\circ-\theta)$の値の範囲を求めよ.
(4)$\mathrm{BC}=3$,$\angle B={135}^\circ$である$\mathrm{ABC}$において,外接円の半径が$3$のとき,$\angle A$の大きさを求めよ.
吉備国際大学 私立 吉備国際大学 2012年 第1問
次の( \quad )を埋めよ.

(1)大のサイコロの目を百の位の数に,中のサイコロの目を十の位の数に,小のサイコロの目を一の位の数とするとき,できた$3$桁の整数が$4$の倍数になる確率は$( ① )$となる.
(2)$(\sqrt{3}+\sqrt{5}+\sqrt{7})(\sqrt{3}+\sqrt{5}-\sqrt{7})$を計算すると$( ② )$である.
(3)$\triangle \mathrm{ABC}$において$3$辺がそれぞれ$\mathrm{AB}=9$,$\mathrm{BC}=17$,$\mathrm{CA}=10$とするときこの三角形の面積は$( ③ )$である.
(4)$(a+b)^{12}$を展開したとき$a^7 b^5$の係数は$( ④ )$である.
(5)点$\mathrm{P}$が線分$\mathrm{AB}$を$7:5$に外分するとき$\mathrm{AB}:\mathrm{BP}=( ⑤ )$である.
高崎経済大学 公立 高崎経済大学 2012年 第1問
以下の各問に答えよ.

(1)$3$次関数$f(x)=ax^3+bx^2-6$がある.$f^{\prime}(1)=7,\ f^{\prime}(-2)=4$となるように定数$a,\ b$の値を定めよ.
(2)次の計算をせよ.ただし,$i^2=-1$である.$\displaystyle \frac{2-i}{1+2i}$
(3)$(2x^2-1)^6$を展開したとき,$x^4$の項の係数を求めよ.
(4)$20$本のくじがあり,当たりくじの賞金と本数は$1$等$1000$円が$1$本,$2$等$500$円が$2$本,$3$等$300$円が$3$本である.ただし,はずれくじの賞金は$0$円である.いま,この中から$1$本のくじを引くときの賞金の期待値を求めよ.
(5)$x$は実数とする.命題「$x>0 \Longrightarrow |-x|>|x-1|$」の真偽を答えよ.また,偽であるときは反例をあげよ.
(6)初項$1$,公比$9$の等比数列$\{a_n\} \ (n=1,\ 2,\ \cdots)$を考える.不等式
\[ a_1+a_2+\cdots +a_k \leqq 2^{20}-2^{-3} \]
を満たす最大の整数$k$の値を求めよ.ただし,$\log_{10}2=0.3010,\ \log_{10}3=0.4771$とする.
(7)$\sqrt[12]{20000},\ \sqrt[3]{6+4\sqrt{3}},\ \sqrt[2]{4+\sqrt{2}}$の$3$数の大小を比較せよ.
(8)三角形$\mathrm{OAB}$において,辺$\mathrm{OA}$を$2:3$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$2:1$に内分する点を$\mathrm{D}$,$2$直線$\mathrm{AD}$,$\mathrm{BC}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$として,ベクトル$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
豊橋技術科学大学 国立 豊橋技術科学大学 2011年 第4問
別々に製造される部品$\mathrm{A}$と部品$\mathrm{B}$を$1$個ずつ組み合わせて製造する製品がある.製品の不良は各部品の不良のみに由来し,部品$\mathrm{A}$に不良が生じる確率は$\displaystyle \frac{1}{9}$,部品$\mathrm{B}$に不良が生じる確率は$\displaystyle \frac{1}{4}$である.製品を製造した後,検査するまで各部品が不良であるかどうかは分からないとする.以下の問いに答えよ.

(1)合格品(不良が無い製品)が製造される確率を求めよ.
(2)製品を$5$個製造した後,検査を行ったとき,$4$個以上が合格品である確率を求めよ.
(3)この製品$1$個の販売価格は$1,200$円である.また,部品$\mathrm{A}$の$1$個あたりの製造費用は$300$円であり,部品$\mathrm{B}$の$1$個あたりの製造費用は$100$円である.製品$1$個あたりの利益は,以下の式で計算される.

(製品$1$個あたりの利益)$=$(販売価格)$-$(製品$1$個あたりの費用)

製品$1$個あたりの費用が部品$\mathrm{A}$と$\mathrm{B}$の製造費用のみと考えてよいとき,製品$1$個あたりの利益の期待値を求めよ.なお,不良品(不良のある製品)は販売しないため,上式の(販売価格)項が$0$となり負の利益(損失)が生じることを考慮せよ.
(4)新たに工作機械を導入することで,部品$\mathrm{B}$に不良が生じる確率を$\displaystyle \frac{1}{8}$にすることができる.しかし,この工作機械の導入費用として$500,000$円が必要であり,これに加えて部品$\mathrm{B}$の$1$個あたりの製造費用は$100$円増加する.$10,000$個製品を製造するとき,工作機械を導入する場合としない場合でどちらが有利か,工作機械を導入する場合の製品$1$個あたりの利益の期待値を示した上で判定せよ.ただし,工作機械の導入費用は$10,000$個の製品の製造でまかなうものとする.また,販売価格および部品$\mathrm{A}$の製造費用は(3)と同じとする.
秋田大学 国立 秋田大学 2011年 第1問
次の問いに答えよ.

(1)$g,\ m,\ n$を実数とし,$\displaystyle g= 2^{\frac{702+m}{1200}},\quad \frac{1}{2^6}g^{12}=2^{\frac{1200+n}{1200}}$とする.

\mon[\maru{1}] $g^4=5$となる$m$を求めよ.ただし,$\log_2 5 = 2.32$として計算せよ.
\mon[\maru{2}] $m$を用いて$n$を表せ.

(2)定積分$\displaystyle \int_0^{1200} 2^{\frac{1200+x}{1200}}\, dx$を求めよ.
岩手大学 国立 岩手大学 2011年 第1問
$x$の関数
\[ f(x) = \int_{-2}^x (3t^2-6t-9) \, dt \]
について,以下の問いに答えよ.

(1)積分を計算し,$f(x)$を求めよ.
(2)$f(-2)$の値を求めよ.
(3)方程式$f(x) = 0$の解をすべて求めよ.
(4)関数$f(x)$の極大値および極小値を求めよ.
(5)座標平面上の2点$(0,\ f(0)),\ (3,\ f(3))$を通る直線の方程式を求めよ.
(6)$y = f(x)$のグラフの接線のうち,(5)で求めた直線と傾きが等しいものをすべて求めよ.
スポンサーリンク

「計算」とは・・・

 まだこのタグの説明は執筆されていません。