タグ「角形」の検索結果

4ページ目:全46問中31問~40問を表示)
豊橋技術科学大学 国立 豊橋技術科学大学 2012年 第1問
座標平面上の点を,原点のまわりに角$\theta$だけ回転移動させる一次変換を表す$2$行$2$列の行列を$A$とする.以下の問いに答えよ.

(1)座標平面上の点$\mathrm{P}_0(a,\ b)$が$A$によって変換された点を点$\mathrm{P}_1$とする.$2$点$\mathrm{P}_0$,$\mathrm{P}_1$の間の長さを求めよ.
(2)$A^n=E$となる条件を示せ.ただし,$n$は$2$以上の整数,$0 \leqq \theta \leqq \pi$,$E$は単位行列とする.
(3)座標平面上の点$\mathrm{P}_0(a,\ b)$が$A$によって$l$回変換された点を点$\mathrm{P}_l$とする.点$\mathrm{P}_0$が$A$によって$n$回変換されると,原点の周りを$1$周して元の点$\mathrm{P}_0$に戻るとする.$n$個の点$\mathrm{P}_0$,$\mathrm{P}_1$,$\cdots$,$\mathrm{P}_{n-1}$で囲まれた$n$角形の面積$S_n$を求めよ.また,$\displaystyle \lim_{x \to 0}\frac{\sin x}{x}=1$を用いて,$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
(4)座標平面上の点を,原点からの方向を変えずに距離を$k$倍する一次変換を表す$2$行$2$列の行列を$B$とする.座標平面上の点$\mathrm{Q}_{i-1}$が一次変換$AB$によって点$\mathrm{Q}_i$に移るとする.点$\mathrm{Q}_0$を$(c_0,\ d_0)$とするとき,$2$点$\mathrm{Q}_{i-1}$,$\mathrm{Q}_i$の間の長さ$m_i$を$k,\ \theta,\ c_0,\ d_0$を用いて表せ.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
曲線上の点$\mathrm{P}$を通り,$\mathrm{P}$におけるこの曲線の接線$\ell$と直交する直線$m$をこの曲線の法線とよぶ.$a,\ b>0$とし,$2$次曲線$x^2 = 4a(y+b)$の法線が$(0,\ 2a)$を通るとき,接点$\mathrm{P}(p,\ q)$は
\[ p^2 = [(41)]ab, \quad q= [(42)] \]
をみたす.したがって条件をみたす接線と法線の組$(\ell,\ m)$は$2$組ある.この$4$本の直線で囲まれる$4$角形$S$の面積は$[(43)][(44)](a+b)\sqrt{ab}$である.また$2$本の法線と$2$次曲線で囲まれる部分で$S$に含まれる部分の面積は
\[ \left( \frac{[(45)][(46)]a+[(47)][(48)]b}{[49]} \right) \sqrt{ab} \]
である.
明治大学 私立 明治大学 2012年 第3問
円に内接する$4$角形$\mathrm{ABCD}$について,$\mathrm{AB}=a$,$\mathrm{BC}=b$,$\mathrm{CD}=c$,$\mathrm{AD}=d$とおくとき,次の問に答えよ.

(1)$a^2+b^2=c^2+d^2$であるための必要十分条件が,$\angle \mathrm{B} = \angle \mathrm{D}$である事を証明せよ.
(2)$\displaystyle a=\frac{\sqrt{2}}{3},\ b=\frac{\sqrt{7}}{3},\ c=\frac{\sqrt{5}}{3},\ d=\frac{2}{3}$とするとき,$\cos (\angle \mathrm{A} - \angle \mathrm{C})$を求めよ.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2012年 第3問
$n$を$3$以上の整数とする.$xyz$空間の平面$z=0$上に,$1$辺の長さが$4$の正$n$角形$P$があり,$P$の外接円の中心を$\mathrm{G}$とおく.半径$1$の球$B$の中心が$P$の辺に沿って$1$周するとき,$B$が通過してできる立体を$K_n$とする.このとき,次の問いに答えよ.

(1)$P$の隣り合う$2$つの頂点$\mathrm{P}_1$,$\mathrm{P}_2$をとる.$\mathrm{G}$から辺$\mathrm{P}_1 \mathrm{P}_2$に下ろした垂線と$\mathrm{P}_1 \mathrm{P}_2$との交点を$\mathrm{Q}$とするとき,$\mathrm{GQ}>1$となることを示せ.
(2)次の各問に答えよ.

(i) $K_n$を平面$z=t (-1 \leqq t \leqq 1)$で切ったときの断面積$S(t)$を$t$と$n$を用いて表せ.
(ii) $K_n$の体積$V(n)$を$n$を用いて表せ.

(3)$\mathrm{G}$を通り,平面$z=0$に垂直な直線を$\ell$とする.$K_n$を$\ell$のまわりに$1$回転させてできる立体の体積$W(n)$を$n$を用いて表せ.
(4)$\displaystyle\lim_{n \to \infty}\frac{V(n)}{W(n)}$を求めよ.
成城大学 私立 成城大学 2012年 第3問
半径$1$の円がある.このとき,以下の問いに答えよ.

(1)この円に外接する正三角形の面積と内接する正三角形の面積との差を求めよ.
(2)この円に外接する正六角形の面積と内接する正六角形の面積との差を求めよ.
(3)この円に外接する正$n$角形の面積と内接する正$n$角形の面積との差を$n$の式で表せ.
関西学院大学 私立 関西学院大学 2012年 第1問
次の文章中の$[ ]$に適する式または数値を記入せよ.

(1)実数$x$が不等式${(\log_2 x)}^2-\log_2 (4x)<0$を満たすとする.このとき,$\log_2 x$の範囲は
\[ [ア]<\log_2 x<[イ] \]
であるから,$x$の範囲は
\[ [ウ]<x<[エ] \]
である.
(2)数列$2,\ 3,\ 0,\ 9,\ -18,\ 63,\ -180,\ \cdots$を$\{a_n\}$とするとき,$\{a_n\}$の階差数列$\{b_n\}$は初項$[オ]$,公比$[カ]$の等比数列である.したがって,$\{a_n\}$の一般項は$a_n=[キ]$である.
(3)円$C$上に頂点をもつ正$8$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_8$の頂点から異なる$3$点を選び,それらを結んで三角形を作る.三角形の作り方は全部で$[ク]$通りある.これらの三角形のうち一辺が円$C$の直径になるものは$[ケ]$個ある.また二等辺三角形になるものは$[コ]$個ある.
首都大学東京 公立 首都大学東京 2012年 第3問
$P$は正$n$角形$(n \geqq 6)$とする.以下の問いに答えなさい.

(1)$P$の異なる2本の対角線の組で,$P$の頂点を共有するものは何通りあるか求めなさい.
(2)$P$の異なる2本の対角線の組で,$P$の頂点以外の点を共有するものは何通りあるか求めなさい.
(3)$P$の異なる2本の対角線の組で,共有点を持たないものは何通りあるか求めなさい.
弘前大学 国立 弘前大学 2011年 第5問
正20角形$P$について,次の問いに答えよ.

(1)正20角形$P$の対角線は何本ひけるか.
(2)正20角形$P$の頂点から3つを選び,これらを頂点とする三角形をつくるとき,$P$と辺を共有しない三角形はいくつあるか.ただし,合同な三角形は区別せずに1つと数えることにする.
福井大学 国立 福井大学 2011年 第1問
1辺の長さが1の正十二面体を考える.点O,A,B,C,D, \\
E,F,Gを図に示す正十二面体の頂点とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$, \\
$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ. \\
ただし,1辺の長さが1の正五角形の対角線の長さは \\
$\displaystyle \frac{1+\sqrt{5}}{2}$であることを用いてよい.なお,正十二面体では, \\
すべての面は合同な正五角形であり, 各頂点は$3$つの正五 \\
角形に共有されている.
\img{366_2547_2011_1}{55}

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(2)$\overrightarrow{\mathrm{CD}}$,$\overrightarrow{\mathrm{BE}}$,$\overrightarrow{\mathrm{OD}}$,$\overrightarrow{\mathrm{OE}}$,$\overrightarrow{\mathrm{OF}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{DF}}$と$\overrightarrow{\mathrm{EF}}$のなす角を求めよ.
早稲田大学 私立 早稲田大学 2011年 第6問
図のように,点$\mathrm{O}$を中心とする半径$1$の円に内接する正$9$角形の頂点$\mathrm{A}_1$,$\mathrm{A}_2$,$\cdots$,$\mathrm{A}_9$から,長さが最大となる対角線を$2$本ずつ引き,それらの交点を$\mathrm{B}_1$,$\mathrm{B}_2$,$\cdots$,$\mathrm{B}_9$とする.これらの点を$\mathrm{A}_1 \to \mathrm{B}_1 \to \mathrm{A}_2 \to \mathrm{B}_2 \to \cdots \to \mathrm{A}_9 \to \mathrm{B}_9 \to \mathrm{A}_1$の順に線分で結んでできた図形を星型$S$とよぶ.ここで,$\tan 10^\circ=a$とするとき,$\triangle \mathrm{OA}_1 \mathrm{B}_1$の辺$\mathrm{OA_1}$を底辺としたときの高さを$h$とすると
\[ h=\frac{[ナ]a}{[ニ]-a^{[ヌ]}} \]
である.よって,星型$S$の面積は$[ネ]h$である.
(図は省略)
スポンサーリンク

「角形」とは・・・

 まだこのタグの説明は執筆されていません。