タグ「角形」の検索結果

1ページ目:全46問中1問~10問を表示)
愛媛大学 国立 愛媛大学 2016年 第1問
次の問いに答えよ.

(1)$a,\ b$を正の実数とする.楕円$\displaystyle \frac{x^2}{4}+y^2=1$を$x$軸方向に$a$,$y$軸方向に$b$だけ平行移動して得られる楕円が$y$軸と直線$y=x$に接するような$a,\ b$を求めよ.
(2)$1$辺の長さが$\sqrt{n}$の正$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$における三角形$\mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_3$の面積を$S_n$とする.このとき$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
(3)$a,\ b$は実数で$a>0$を満たすとする.放物線$\displaystyle y=\frac{1}{2a^2}x^2$と曲線$y=\log x+b$がただ$1$つの共有点$\mathrm{P}$をもつとき,$\mathrm{P}$の座標および$b$を$a$を用いて表せ.

(4)$1 \leqq x \leqq 2$とする.関数$\displaystyle f(x)=\int_1^2 \frac{|t-x|}{t^2} \, dt$を最小にする$x$の値を求めよ.
愛媛大学 国立 愛媛大学 2016年 第2問
次の問いに答えよ.

(1)$a,\ b$を正の実数とする.楕円$\displaystyle \frac{x^2}{4}+y^2=1$を$x$軸方向に$a$,$y$軸方向に$b$だけ平行移動して得られる楕円が$y$軸と直線$y=x$に接するような$a,\ b$を求めよ.
(2)$1$辺の長さが$\sqrt{n}$の正$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$における三角形$\mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_3$の面積を$S_n$とする.このとき$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
(3)$a,\ b$は実数で$a>0$を満たすとする.放物線$\displaystyle y=\frac{1}{2a^2}x^2$と曲線$y=\log x+b$がただ$1$つの共有点$\mathrm{P}$をもつとき,$\mathrm{P}$の座標および$b$を$a$を用いて表せ.

(4)$1 \leqq x \leqq 2$とする.関数$\displaystyle f(x)=\int_1^2 \frac{|t-x|}{t^2} \, dt$を最小にする$x$の値を求めよ.
早稲田大学 私立 早稲田大学 2016年 第1問
$[ア]$~$[エ]$にあてはまる数または式を記入せよ.

(1)$2^{100}$を$2016$で割った余りは$[ア]$である.
(2)$a,\ b$を正の整数とする.方程式
\[ 2x^3-ax^2+bx+3=0 \]
が,$1$以上の有理数の解を持つような$a$の最小値は$[イ]$である.
(3)正$2016$角形$P$がある.頂点がすべて$P$の頂点であるような正多角形は全部で$[ウ]$個ある.ただし,頂点の異なる正多角形は異なるものとする.

(4)$\displaystyle \left( \sum_{k=1}^{2016} k \sin \frac{(2k-1) \pi}{2016} \right) \sin \frac{\pi}{2016}=[エ]$
早稲田大学 私立 早稲田大学 2016年 第4問
以下の問に答えよ.

(1)次の空欄にあてはまる式または数を記入せよ.
半径$1$の円$\mathrm{O}$に内接する長方形$\mathrm{ABCD}$がある.角$\mathrm{OAB}$を$\displaystyle x \left( 0<x<\frac{\pi}{2} \right)$とするとき,長方形$\mathrm{ABCD}$の面積は$[ア]$となる.したがって,$x=[イ]$のとき最大面積$[ウ]$をとる.
(2)半径$1$の円$\mathrm{O}$に内接する$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$の内角
\[ \mathrm{A}_k \mathrm{A}_{k+1} \mathrm{A}_{k+2} \quad (k=1,\ 2,\ \cdots,\ n,\ n \geqq 3 \;;\; \text{ただし,} \mathrm{A}_{n+1}=\mathrm{A}_1,\ \mathrm{A}_{n+2}=\mathrm{A}_2) \]
がすべて$\alpha (0<\alpha<\pi)$に等しいとする.このとき,次の問に答えよ.

(i) $a_k (k=1,\ 2,\ \cdots,\ n)$は弧$\mathrm{A}_k \mathrm{A}_{k+1}$の長さを表すとする.角$\displaystyle \mathrm{OA}_k \mathrm{A}_{k+1}=\theta_k \left( 0<\theta_k<\frac{\pi}{2} \right)$とおくとき,$a_k$,$a_{k+1}$および$a_k+a_{k+1}$を,$\theta_k$,$\alpha$を用いて表せ.
(ii) $n$が奇数のとき,$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$は正$n$角形となることを示せ.
(iii) $n$が偶数のとき,$\theta_1=\theta_3=\cdots =\theta_{n-1}$を示せ.さらに,その等しい角を$\theta$とおいて,$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$の面積$S_n(\theta)$を$\alpha$,$\theta$を用いて表せ.
\mon[$\tokeishi$] $\alpha$を$n$の式で表し,$(ⅲ)$における$S_n(\theta)$の最大値とそのときの$\theta$を$n$の式で表せ.

(図は省略)
一橋大学 国立 一橋大学 2015年 第3問
$n$を$4$以上の整数とする.正$n$角形の$2$つの頂点を無作為に選び,それらを通る直線を$\ell$とする.さらに,残りの$n-2$個の頂点から$2$つの頂点を無作為に選び,それらを通る直線を$m$とする.直線$\ell$と$m$が平行になる確率を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第2問
次の問いに答えよ.

(1)正$6$角形の$6$つの頂点を$1,\ 2,\ 3,\ 4,\ 5,\ 6$とする.サイコロを$3$回振って出た目を順に$i,\ j,\ k$とする.頂点$i,\ j,\ k$が$3$角形をなす確率,直角$3$角形をなす確率,鋭角$3$角形をなす確率,鈍角$3$角形をなす確率をそれぞれ求めよ.
(2)正$n$角形の$n$個の頂点を$1,\ 2,\ \cdots,\ n$とする.番号$1,\ 2,\ \cdots,\ n$が等確率で現れるくじを引いて戻すことを$3$回繰り返し,出た番号を順に$i,\ j,\ k$とする.頂点$i,\ j,\ k$が直角$3$角形をなす確率,鋭角$3$角形をなす確率をそれぞれ求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第2問
次の問いに答えよ.

(1)正$6$角形の$6$つの頂点を$1,\ 2,\ 3,\ 4,\ 5,\ 6$とする.サイコロを$3$回振って出た目を順に$i,\ j,\ k$とする.頂点$i,\ j,\ k$が$3$角形をなす確率,直角$3$角形をなす確率,鋭角$3$角形をなす確率,鈍角$3$角形をなす確率をそれぞれ求めよ.
(2)正$n$角形の$n$個の頂点を$1,\ 2,\ \cdots,\ n$とする.番号$1,\ 2,\ \cdots,\ n$が等確率で現れるくじを引いて戻すことを$3$回繰り返し,出た番号を順に$i,\ j,\ k$とする.頂点$i,\ j,\ k$が直角$3$角形をなす確率,鋭角$3$角形をなす確率をそれぞれ求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第2問
次の問いに答えよ.

(1)正$6$角形の$6$つの頂点を$1,\ 2,\ 3,\ 4,\ 5,\ 6$とする.サイコロを$3$回振って出た目を順に$i,\ j,\ k$とする.頂点$i,\ j,\ k$が$3$角形をなす確率,直角$3$角形をなす確率をそれぞれ求めよ.
(2)正$n$角形の$n$個の頂点を$1,\ 2,\ \cdots,\ n$とする.番号$1,\ 2,\ \cdots,\ n$が等確率で現れるくじを引いて戻すことを$3$回繰り返し,出た番号を順に$i,\ j,\ k$とする.頂点$i,\ j,\ k$が直角$3$角形をなす確率を求めよ.
立教大学 私立 立教大学 2015年 第1問
次の空欄$[ア]$~$[シ]$に当てはまる数または式を記入せよ.

(1)式$(2x+3y+z)(x+2y+3z)(3x+y+2z)$を展開したときの$xyz$の係数は$[ア]$である.
(2)実数$x,\ y$が$\displaystyle \frac{i}{1+xi}+\frac{x+2}{y+i}=0$を満たすとき,$x=[イ]$,$y=[ウ]$である.ただし,$i$は虚数単位とする.
(3)定積分$\displaystyle \int_{-2}^2 x |x-1| \, dx$を求めると$[エ]$である.
(4)$2^{\frac{1}{2}},\ 3^{\frac{1}{3}},\ 5^{\frac{1}{5}}$の大小関係は$[オ]<[カ]<[キ]$である.
(5)不等式$\displaystyle (\log_2 x)^2+\log_2 \frac{x}{2}<1$を満たす$x$の範囲は$[ク]$である.
(6)半径$1$の円に内接する正$n$角形の周の長さは$[ケ]$である.
(7)座標空間における$3$点$\mathrm{A}(1,\ -1,\ 5)$,$\mathrm{B}(4,\ 5,\ 2)$,$\mathrm{C}(a,\ b,\ 0)$が一直線上にあるとき,$a=[コ]$,$b=[サ]$である.
(8)円$x^2+y^2=1$と直線$y=kx+2 (k>0)$が接するとき,その接点の座標は$[シ]$である.
福岡大学 私立 福岡大学 2015年 第1問
次の$[ ]$をうめよ.

(1)$x^4+3x^3+5x^2+2x+1$を$(x+1)(x+2)$で割ったときの余りを求めると$[ ]$である.また,$\displaystyle \frac{a}{3}=\frac{b}{7}$のとき$\displaystyle \frac{7a^3-5a^2b-3ab^2+9b^3}{3ab(3a+b)}$の値を求めると$[ ]$である.
(2)方程式$3^{2x}+6^x=3^{x+2}+9 \times 2^x$の解は$[ ]$であり,$4x+9^{\log_3 (x-1)}=5$の解は$[ ]$である.
(3)正$10$角形の$3$個の頂点を結んで$3$角形を作る.正$10$角形と$1$辺だけを共有する$3$角形は$[ ]$通りある.また,正$10$角形と辺を共有しない$3$角形は$[ ]$通りある.
スポンサーリンク

「角形」とは・・・

 まだこのタグの説明は執筆されていません。