タグ「角度」の検索結果

81ページ目:全901問中801問~810問を表示)
金沢大学 国立 金沢大学 2010年 第3問
Oを原点とする座標平面上の円$C:x^2+y^2=1$と直線$x+2y=1$の交点のうち,$x$座標の小さい方をP,他方をQとする.点P,Qにおける円$C$の接線をそれぞれ$\ell,\ m$とする.次の問いに答えよ.

(1)P,Qの座標を求めよ.また,$\ell$と$m$の交点Rの座標を求めよ.
(2)線分ORと$C$の交点をSとする.Sの座標を求めよ.また,$\triangle$QRSの面積を求めよ.
(3)$\angle \text{PQS}=\angle \text{RQS}$であることを示せ.
九州大学 国立 九州大学 2010年 第1問
三角形$\mathrm{ABC}$の$3$辺の長さを$a = \mathrm{BC},\ b = \mathrm{CA},\ c = \mathrm{AB}$とする.実数$t \geqq 0$を与えたとき,$\mathrm{A}$を始点とし$\mathrm{B}$を通る半直線上に$\mathrm{AP} = tc$となるように点$\mathrm{P}$をとる.次の問いに答えよ.

(1)$\mathrm{CP}^2$を$a,\ b,\ c,\ t$を用いて表せ.
(2)点$\mathrm{P}$が$\mathrm{CP} = a$を満たすとき,$t$を求めよ.
(3)$(2)$の条件を満たす点$\mathrm{P}$が辺$\mathrm{AB}$上にちょうど$2$つあるとき,$\angle \mathrm{A}$と$\angle \mathrm{B}$に関する条件を求めよ.
九州大学 国立 九州大学 2010年 第1問
三角形$\mathrm{ABC}$の$3$辺の長さを$a = \mathrm{BC},\ b = \mathrm{CA},\ c = \mathrm{AB}$とする.実数$t \geqq 0$を与えたとき,$\mathrm{A}$を始点とし$\mathrm{B}$を通る半直線上に$\mathrm{AP} = tc$となるように点$\mathrm{P}$をとる.次の問いに答えよ.

(1)$\mathrm{CP}^2$を$a,\ b,\ c,\ t$を用いて表せ.
(2)点$\mathrm{P}$が$\mathrm{CP} = a$を満たすとき,$t$を求めよ.
(3)$(2)$の条件を満たす点$\mathrm{P}$が辺$\mathrm{AB}$上にちょうど$2$つあるとき,$\angle \mathrm{A}$と$\angle \mathrm{B}$に関する条件を求めよ.
九州大学 国立 九州大学 2010年 第3問
$xy$平面上に原点Oを中心とする半径1の円を描き,その上半分を$C$とし,その両端をA$(-1,\ 0)$,B$(1,\ 0)$とする.$C$上の2点N,Mを$\text{NM}=\text{MB}$となるように取る.ただし,$\text{N} \neq \text{B}$とする.このとき,次の問いに答えよ.

(1)$\angle \text{MAB}=\theta$とおき,弦の長さMB及び点Mの座標を$\theta$を用いて表せ.
(2)点Nから$x$軸に下ろした垂線をNPとしたとき,PBを$\theta$を用いて表せ.
(3)$t=\sin \theta$とおく.条件$\text{MB}=\text{PB}$を$t$を用いて表せ.
(4)$\text{MB}=\text{PB}$となるような点Mが唯一あることを示せ.
岩手大学 国立 岩手大学 2010年 第2問
座標平面上に$3$点$\mathrm{A}(1,\ 2)$,$\mathrm{B}(4,\ 11)$,$\mathrm{C}(-1,\ 6)$があるとき,次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AC}}$のなす角$\theta$を求めよ.
(2)点$\mathrm{A}$を通り,ベクトル$\overrightarrow{\mathrm{AC}}$を方向ベクトルとする直線上の点を$\mathrm{D}$とする.$\triangle \mathrm{ABD}$の面積が$45$となる点$\mathrm{D}$の座標を求めよ.ただし,$\angle \mathrm{BAD}$は鋭角とする.
(3)線分$\mathrm{AB}$上の点を$\mathrm{E}$とするとき,$\angle \mathrm{ACE}$が$60^\circ$となる点$\mathrm{E}$の座標を求めよ.
千葉大学 国立 千葉大学 2010年 第1問
直角三角形$\mathrm{ABC}$は$\angle \mathrm{C}$が直角で,各辺の長さは整数であるとする.辺$\mathrm{BC}$の長さが3以上の素数$p$であるとき,以下の問いに答えよ.

(1)辺$\mathrm{AB}$,$\mathrm{CA}$の長さを$p$を用いて表せ.
(2)$\tan \angle \mathrm{A}$と$\tan \angle \mathrm{B}$は,いずれも整数にならないことを示せ.
東京大学 国立 東京大学 2010年 第1問
Oを原点とする座標平面上に点A$(-3,\ 0)$をとり,
$0^\circ<\theta<120^\circ$の範囲にある$\theta$に対して,次の条件(i),(ii)をみたす2点B,Cを考える.

\mon[(i)] Bは$y>0$の部分にあり,$\text{OB}=2$かつ$\angle \text{AOB}=180^\circ-\theta$である.
\mon[(ii)] Cは$y<0$の部分にあり,$\text{OC}=1$かつ$\angle \text{BOC}=120^\circ$である.ただし$\triangle \text{ABC}$はOを含むものとする.

\quad 次の問(1),(2)に答えよ.

(1)$\triangle \text{OAB}$と$\triangle \text{OAC}$の面積が等しいとき,$\theta$の値を求めよ.
(2)$\theta$を$0^\circ<\theta<120^\circ$の範囲で動かすとき,$\triangle \text{OAB}$と$\triangle \text{OAC}$の面積の和の最大値と,そのときの$\sin \theta$の値を求めよ.
岩手大学 国立 岩手大学 2010年 第1問
次の問いに答えよ.

(1)$\sqrt{2}=1.41421,\ \sqrt{3}=1.73205,\ \sqrt{6}=2.44949$として$\displaystyle \frac{1}{1+\sqrt{2}-\sqrt{3}}$の値を,小数第5位以下を切り捨てて,小数第4位まで求めよ.
(2)2次方程式$x^2-4mx+m+3=0$が重解をもつとき,$m$の値を求めよ.
(3)$\triangle$ABCにおいて,$\text{AB}=5,\ \text{BC}=7,\ \text{CA}=8$であるとき,$\angle \text{BAC}$の大きさを求めよ.
岩手大学 国立 岩手大学 2010年 第1問
次の問いに答えよ.

(1)$\sqrt{2}=1.41421,\ \sqrt{3}=1.73205,\ \sqrt{6}=2.44949$として$\displaystyle \frac{1}{1+\sqrt{2}-\sqrt{3}}$の値を,小数第$5$位以下を切り捨てて,小数第$4$位まで求めよ.
(2)$2$次方程式$x^2-4mx+m+3=0$が重解をもつとき,$m$の値を求めよ.
(3)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=5,\ \mathrm{BC}=7,\ \mathrm{CA}=8$であるとき,$\angle \mathrm{BAC}$の大きさを求めよ.
岩手大学 国立 岩手大学 2010年 第2問
座標平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(25,\ 0)$,$\mathrm{B}(16,\ 12)$をとる.このとき,以下の問いに答えよ.

(1)$x$軸上に点$\mathrm{C}$をとり,$\triangle \mathrm{OBC}$を$\mathrm{OB}=\mathrm{OC}$であるような二等辺三角形にしたい.そのような$\mathrm{C}$の座標を求めよ.ただし,$\mathrm{C}$の$x$座標は正とする.
(2)$\angle \mathrm{AOB}$の二等分線の方程式を求めよ.
(3)$\angle \mathrm{OBA}$の大きさを求めよ.
(4)座標平面上の点$\mathrm{P}$と$\triangle \mathrm{OAB}$の周との距離を,$\mathrm{P}$に最も近い周上の点と$\mathrm{P}$との距離,と定める.このとき,点$(15,\ 6)$と$\triangle \mathrm{OAB}$の周との距離を求めよ.
(5)$\triangle \mathrm{OAB}$の周との距離が最大となる$\triangle \mathrm{OAB}$の内部の点の座標を求めよ.
スポンサーリンク

「角度」とは・・・

 まだこのタグの説明は執筆されていません。