タグ「角度」の検索結果

80ページ目:全901問中791問~800問を表示)
京都大学 国立 京都大学 2010年 第2問
$x$を正の実数とする.座標平面上の3点A$(0,\ 1)$,B$(0,\ 2)$,P$(x,\ x)$をとり,$\triangle$APBを考える.$x$の値が変化するとき,$\angle$APBの最大値を求めよ.
京都大学 国立 京都大学 2010年 第1問
次の各問に答えよ.

(1)座標平面上で,点$(1,\ 2)$を通り傾き$a$の直線と放物線$y=x^2$によって囲まれる部分の面積を$S(a)$とする.$a$が$0 \leqq a \leqq 6$の範囲を変化するとき,$S(a)$を最小にするような$a$の値を求めよ.
(2)$\triangle$ABCにおいて$\text{AB}=2,\ \text{AC}=1$とする.$\angle \text{BAC}$の二等分線と辺BCの交点をDとする.$\text{AD}=\text{BD}$となるとき,$\triangle$ABCの面積を求めよ.
秋田大学 国立 秋田大学 2010年 第2問
$xy$平面上の四角形OABCにおいて,対角線OBを考え,$\angle \text{AOB}$の二等分線と$\angle \text{OAB}$の二等分線の交点をI,$\angle \text{BOC}$の二等分線と$\angle \text{OCB}$の二等分線の交点を$\text{I}^\prime$とする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ |\overrightarrow{\mathrm{OA}}|=a,\ |\overrightarrow{\mathrm{OB}}|=b,\ |\overrightarrow{\mathrm{AB}}|=p$とするとき,これらを用いて$\overrightarrow{\mathrm{OI}}$を表せ.
(2)4点O,A,B,CをO$(0,\ 0)$, A$(1,\ 1)$, B$\displaystyle (\frac{3-\sqrt{3}}{2},\ \frac{3+\sqrt{3}}{2})$, C$(-\sqrt{3},\ \sqrt{3})$と定める.$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\text{I\,I}^\prime}$がなす角を$\theta$とするとき,$\cos \theta$の値を求めよ.
神戸大学 国立 神戸大学 2010年 第2問
空間内に4点O,A,B,Cがあり,
\[ \text{OA} = 3,\ \text{OB} = \text{OC} = 4,\ \angle \text{BOC} = \angle \text{COA} = \angle \text{AOB} = \frac{\pi}{3} \]
であるとする.3点A,B,Cを通る平面に垂線OHをおろす.このとき,以下の問に答えよ.

(1)$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とし,$\overrightarrow{\mathrm{OH}}=r\overrightarrow{a}+s\overrightarrow{b}+t\overrightarrow{c}$と表すとき,$r,\ s,\ t$を求めよ.
(2)直線CHと直線ABの交点をDとするとき,長さの比$\text{CH}:\text{HD},\ \text{AD}:\text{DB}$をそれぞれ求めよ
東北大学 国立 東北大学 2010年 第2問
$a,\ b$を正の実数とする.曲線$C : y = x^3 −a^2x+a^3$と点$\mathrm{P}(b,\ 0)$を考える.以下の問いに答えよ.

(1)点$\mathrm{P}$から曲線$C$に接線がちょうど$3$本引けるような点$(a,\ b)$の存在する領域を図示せよ.
(2)点$\mathrm{P}$から曲線$C$に接線がちょうど$2$本引けるとする.$2$つの接点を$\mathrm{A}$,$\mathrm{B}$としたとき,$\angle \mathrm{APB}$が$90^\circ$より小さくなるための$a$と$b$の条件を求めよ.
北海道大学 国立 北海道大学 2010年 第4問
直角三角形$\mathrm{ABC}$において,$\displaystyle \angle \mathrm{C}=\frac{\pi}{2},\ \mathrm{AB}=1$であるとする.$\angle \mathrm{B}=\theta$とおく.点$\mathrm{C}$から辺$\mathrm{AB}$に垂線$\mathrm{CD}$を下ろし,点$\mathrm{D}$から辺$\mathrm{BC}$に垂線$\mathrm{DE}$を下ろす.$\mathrm{AE}$と$\mathrm{CD}$の交点を$\mathrm{F}$とする.

(1)$\displaystyle \frac{\mathrm{DE}}{\mathrm{AC}}$を$\theta$で表せ.
(2)$\triangle \mathrm{FEC}$の面積を$\theta$で表せ.
静岡大学 国立 静岡大学 2010年 第2問
$xy$平面上で,点A$(-1,\ 0)$を中心とする円$C_1$と点B$(1,\ 0)$を中心とする円$C_2$が原点Oで外接している.点Pは円$C_1$上を,点Qは円$C_2$上を,それぞれ正の向きに回転する.今,P,Qが同時に原点を出発して,QはPの2倍の速さで回転する.このとき,次の問いに答えよ.

(1)$\angle \text{OAP} = \theta$とするとき,P,Qの座標をそれぞれ$\theta$を用いて表せ.
(2)線分PQの長さの最大値を求めよ.
静岡大学 国立 静岡大学 2010年 第4問
$xy$平面上で,点A$(-1,\ 0)$を中心とする円$C_1$と点B$(1,\ 0)$を中心とする円$C_2$が原点Oで外接している.点Pは円$C_1$上を,点Qは円$C_2$上を,それぞれ正の向きに回転する.今,P,Qが同時に原点を出発して,QはPの2倍の速さで回転する.このとき,次の問いに答えよ.

(1)$\angle \text{OAP} = \theta$とするとき,P,Qの座標をそれぞれ$\theta$を用いて表せ.
(2)線分PQの長さの最大値を求めよ.
埼玉大学 国立 埼玉大学 2010年 第1問
行列$A = \left(
\begin{array}{cc}
a & b \\
c & d
\end{array}
\right)$の表す1次変換$f$は,点$(1,\ 1)$を点$(2,\ 3)$に,点$(2,\ -1)$を点$(2k,\ -k-1)$に移すとする.また,原点をOとし,点$(1,\ 0)$,$(0,\ 1)$を$f$で移した点をそれぞれP,Qとする.

(1)$A$の成分$a,\ b,\ c,\ d$を$k$を用いて表せ.
(2)$\angle$POQが直角となる$k$を求めよ.
(3)$\text{OP}=\text{OQ}$となる$k$を求めよ.
埼玉大学 国立 埼玉大学 2010年 第1問
行列$A = \left(
\begin{array}{cc}
a & b \\
c & d
\end{array}
\right)$の表す1次変換$f$は,点$(1,\ 1)$を点$(2,\ 3)$に,点$(2,\ -1)$を点$(2k,\ -k-1)$に移すとする.また,原点をOとし,点$(1,\ 0)$,$(0,\ 1)$を$f$で移した点をそれぞれP,Qとする.

(1)$A$の成分$a,\ b,\ c,\ d$を$k$を用いて表せ.
(2)$\angle$POQが直角となる$k$を求めよ.
(3)$\text{OP}=\text{OQ}$となる$k$を求めよ.
スポンサーリンク

「角度」とは・・・

 まだこのタグの説明は執筆されていません。