タグ「角度」の検索結果

78ページ目:全901問中771問~780問を表示)
関西学院大学 私立 関西学院大学 2011年 第2問
座標空間において,原点を$\mathrm{O}$とし,点$\mathrm{A}(1,\ 0,\ 0)$をとる.また,$xy$平面上にあり,中心が原点,半径が$1$の円を$C$とするとき,以下の問いに答えよ.

(1)$C$の$y \geqq 0$の部分にある点$\mathrm{P}$について$\angle \mathrm{AOP}=t (0 \leqq t \leqq \pi)$とする.このとき,点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)点$\mathrm{Q}$を$\overrightarrow{\mathrm{OQ}}=-\overrightarrow{\mathrm{OP}}$を満たす点とし,点$\mathrm{B}(\sqrt{3},\ 1,\ 1)$をとる.このとき,内積$\overrightarrow{\mathrm{BP}} \cdot \overrightarrow{\mathrm{BQ}}$を求めよ.また,$|\overrightarrow{\mathrm{BP}}|^2=m-n \sin (t+\alpha)$となるような定数$\displaystyle m,\ n,\ \alpha \left( \text{ただし,} 0 \leqq \alpha \leqq \frac{\pi}{2} \right)$を求めよ.
(3)$\angle \mathrm{PBQ}=\theta$とおくとき,$\cos \theta$の最大値と最小値,およびそれらのときの$t$の値を求めよ.
(4)$\cos \theta$が上で求めた最小値をとるとき,三角形$\mathrm{PBQ}$の面積を求めよ.
津田塾大学 私立 津田塾大学 2011年 第1問
次の問に答えよ.

(1)$x>0$のとき,関数$\displaystyle f(x)=x^2+x+\frac{2}{x}+\frac{1}{2x^2}$の最小値を求めよ.
(2)$1$から$10$までの番号が書かれた$10$枚のカードから同時に$3$枚を取り出したとき,カードに書かれた$3$つの数字の積が$3$の倍数になる確率を求めよ.
(3)三角形$\mathrm{ABC}$で$\angle \mathrm{A}={75}^\circ$,$\mathrm{BC}=\sqrt{2}$,$\mathrm{AB}=\sqrt{3}-1$のとき,$\angle \mathrm{C}$,$\mathrm{AC}$を求めよ.
津田塾大学 私立 津田塾大学 2011年 第4問
原点$\mathrm{O}(0,\ 0,\ 0)$と点$\mathrm{A}(1,\ 1,\ 1)$を通る直線上に点$\mathrm{M}$をとり,$xy$平面上に点$\mathrm{P}$をとる.$3$条件

(i) $\overrightarrow{\mathrm{MP}} \perp \overrightarrow{\mathrm{OA}}$
(ii) $\angle \mathrm{POA}={60}^\circ$
(iii) $\mathrm{MP}=1$

が同時に成り立つとき,点$\mathrm{M}$と点$\mathrm{P}$の座標を求めよ.
愛知学院大学 私立 愛知学院大学 2011年 第4問
三角形$\mathrm{ABC}$で$\angle \mathrm{B}={45}^\circ$,$\angle \mathrm{C}={60}^\circ$,$\mathrm{BC}=10$のとき,
\[ \sin A=\frac{\sqrt{2}+\sqrt{[ア]}}{[イ]} \]
で,$\mathrm{AB}$の長さは$[ウエ] \sqrt{[オ]}-[カ] \sqrt{[キ]}$,

$\mathrm{AC}$の長さは$[クケ] \sqrt{[コ]}-[サシ]$である.
吉備国際大学 私立 吉備国際大学 2011年 第2問
$\triangle \mathrm{ABC}$で,$\mathrm{AB}=8$,$\mathrm{BC}=7$,$\mathrm{CA}=6$とする.$\angle \mathrm{BAC}$の二等分線と$\mathrm{BC}$の交点を$\mathrm{D}$とし,$\triangle \mathrm{ABC}$の重心$\mathrm{G}$に対し,直線$\mathrm{AG}$と$\mathrm{BC}$の交点を$\mathrm{H}$とする.次の問題に答えよ.

(1)$\mathrm{BD}$の長さを求めよ.
(2)$\mathrm{DH}$の長さを求めよ.
(3)$\mathrm{AG}$の長さを求めよ.
首都大学東京 公立 首都大学東京 2011年 第3問
原点を$\mathrm{O}$とする座標平面上に点$\mathrm{A}(3,\ 0)$を中心とし半径が$r_1$の円$C_1$と,点$\mathrm{B}(1,\ 0)$を中心とし半径が$r_2$の円$C_2$がある.$C_1$上に$y$座標が正である点$\mathrm{P}_1$をとり,$\angle \mathrm{OAP}_1 = \theta$とする.$C_2$上に$y$座標が負である点$\mathrm{P}_2$を,ベクトル$\overrightarrow{\mathrm{AP}_1}$と$\overrightarrow{\mathrm{BP}_2}$が平行であるようにとるとき,以下の問いに答えなさい.

(1)$\mathrm{P}_1$,$\mathrm{P}_2$の座標を$r_1,\ r_2,\ \theta$でそれぞれ表しなさい.
(2)$r_1+r_2 < 2$とする.$\mathrm{P}_1$,$\mathrm{P}_2$を通る直線が$C_1$と$C_2$の両方に接するとき,$\cos \theta$を求めなさい.
(3)$(2)$の条件のもとで$\triangle \mathrm{OP}_1 \mathrm{P}_2$の面積を$r_1,\ r_2$で表しなさい.
兵庫県立大学 公立 兵庫県立大学 2011年 第4問
地点Aから300m離れた地点Bに移動して辺りを見渡すと,電波塔が見えた.このとき,Bから電波塔の先端Pを見あげた角度は$30^\circ$であり,Pの真下の地点をCとすると,$\angle \text{ABC}=75^\circ$,$\angle \text{BCA}=45^\circ$であった.電波塔の高さPCを求めなさい.ただし,ABCの各地点に高低差はない.
京都府立大学 公立 京都府立大学 2011年 第1問
$\triangle \mathrm{ABC}$の$3$つの角$\angle \mathrm{A},\ \angle \mathrm{B},\ \angle \mathrm{C}$のそれぞれの大きさを$A,\ B,\ C$とする.以下の問いに答えよ.

(1)$\displaystyle \cos A+\cos B=2 \cos \frac{A+B}{2}\cos \frac{A-B}{2}$を余弦の加法定理から導け.
(2)$(1)$の結果を用いて$\displaystyle \cos A+\cos B \leqq 2\sin \frac{C}{2}$を示せ.また,等号が成り立つのはどのようなときか.
(3)$(2)$の結果を用いて$\cos A+\cos B+\cos C$が最大となるとき,$A,\ B,\ C$を求めよ.
京都府立大学 公立 京都府立大学 2011年 第2問
$\triangle \mathrm{OAB}$に対し,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,$\overrightarrow{\mathrm{OP}}=s\overrightarrow{a}+t\overrightarrow{b}$で表される点$\mathrm{P}$を考える.点$\mathrm{C}$は辺$\mathrm{OB}$を$3:1$に外分する点とする.以下の問いに答えよ.

(1)実数$s,\ t$が$\displaystyle 0 \leqq s \leqq \frac{1}{2},\ 0 \leqq t \leqq \frac{1}{2}$の条件を満たしながら動くとき,$\mathrm{P}$の存在範囲を求めよ.
(2)実数$s,\ t$が$3s+2t=3,\ s \geqq 0,\ t \geqq 0$の条件を満たしながら動くとき,$\mathrm{P}$の存在範囲を求めよ.
(3)実数$s,\ t$が$s+2t=2,\ 3s+2t=3,\ s \geqq 0,\ t \geqq 0$の条件を満たすとき,$\displaystyle \frac{|\overrightarrow{\mathrm{CP}}|}{|\overrightarrow{\mathrm{AP}}|}$を求めよ.
(4)$|\overrightarrow{\mathrm{OA}}|=4,\ |\overrightarrow{\mathrm{OB}}|=3,\ \angle \text{AOB}=60^\circ$とする.$\mathrm{P}$が辺$\mathrm{AB}$の垂直二等分線上にあるとき,$s,\ t$の関係式を求めよ.
名古屋市立大学 公立 名古屋市立大学 2011年 第4問
長方形OAB$_1$C$_1$において$\text{OA}=1,\ \angle \text{AOB}_1=\theta \ (0^\circ<\theta<90^\circ)$とする.図のように,この長方形の対角線OB$_1$を一辺とし,$\angle \text{B}_1 \text{OB}_2=\theta$となる長方形OB$_1$B$_2$C$_2$を反時計回りに作る.同様にして$\angle \text{B}_n \text{OB}_{n+1}=\theta$となる長方形OB$_n$B$_{n+1}$C$_{n+1} \ (n=1,\ 2,\ \cdots)$を作る.次の問いに答えよ.

(1)線分OB$_1$およびB$_1$B$_2$の長さを$\theta$で表せ.
(2)長方形OB$_n$B$_{n+1}$C$_{n+1}$の面積を$n$と$\theta$で表せ.ただしB$_0=\text{A}$とする.
(3)$\theta=30^\circ$のとき,図形OAB$_1$B$_2$B$_3$B$_4$C$_4$の面積$S$を求めよ.


\setlength\unitlength{1truecm}
(図は省略)
スポンサーリンク

「角度」とは・・・

 まだこのタグの説明は執筆されていません。