タグ「角度」の検索結果

64ページ目:全901問中631問~640問を表示)
大阪工業大学 私立 大阪工業大学 2012年 第2問
座標空間内の$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(2 \sqrt{2},\ -2 \sqrt{3},\ 2)$,$\mathrm{B}(\sqrt{6}-\sqrt{2},\ 3+\sqrt{3},\ \sqrt{3}-1)$について,次の問いに答えよ.

(1)$|\overrightarrow{\mathrm{OA}}|$,$|\overrightarrow{\mathrm{OB}}|$,$|\overrightarrow{\mathrm{AB}}|$および$\angle \mathrm{AOB}$を求めよ.ただし,$0 \leqq \angle \mathrm{AOB} \leqq \pi$とする.
(2)点$\mathrm{O}$を中心とし,$2$点$\mathrm{A}$,$\mathrm{B}$を通る円の周上から$\mathrm{A}$,$\mathrm{B}$を含む$6$点をとって正六角形を作る.このとき,$\mathrm{A}$,$\mathrm{B}$以外の$4$頂点の座標を求めよ.
(3)この正六角形の面積$S$を求めよ.
獨協大学 私立 獨協大学 2012年 第1問
次の設問の空欄を,あてはまる数値や記号,式などで埋めなさい.

(1)${(2x+3y)}^3+{(2x-3y)}^3$を展開すると$[$1$]$になる.
(2)$-1<a<0<b<c$とするとき,
\[ -\frac{a}{c},\ \frac{a}{c},\ \frac{1}{ac},\ -\frac{1}{ab},\ -\frac{1}{ac} \]
の$5$つの数のうち,小さい方から$2$番目の数は$[$2$]$であり$4$番目の数は$[$3$]$である.
(3)$\displaystyle \frac{\pi}{2} \leqq \theta<\frac{3\pi}{2}$のときに
\[ 2 \sin^3 \theta-\sin \theta=0 \]
の解をすべて記すと$[$4$]$である.
(4)$a,\ b$を定数とする$x$に関する$3$次方程式
\[ 2x^3+ax^2+bx-10=0 \]
の$2$つの解が$x=1,\ 2$であるとき,$a=[$5$]$,$b=[$6$]$であり,もう$1$つの解は$[$7$]$である.
(5)$\mathrm{P}$,$\mathrm{E}$,$\mathrm{N}$,$\mathrm{C}$,$\mathrm{I}$,$\mathrm{L}$の文字が$1$つずつ刻まれているタイルが$6$枚ある.これらを横$1$列に並べるとき,$\mathrm{P}$が$\mathrm{E}$より左で,かつ,$\mathrm{N}$が$\mathrm{E}$より右となる確率は$[$8$]$である.
(6)$a$を定数とする方程式$x^3-6x^2-a=0$の異なる実数解は,$a$の値が$[$9$]$の場合には$3$個,$[$10$]$または$[$11$]$の場合には$2$個,$[$12$]$または$[$13$]$の場合には$1$個,それぞれ存在する.
(7)$\alpha$を実数として,空間における原点$\mathrm{O}$と$2$点$\mathrm{A}(-1,\ \alpha,\ \alpha)$,$\mathrm{B}(1,\ 2,\ \alpha)$を考える.$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$を最小にする$\alpha$の値は$[$14$]$であり,このとき,三角形$\mathrm{OAB}$の面積は$[$15$]$である.
(8)点$\mathrm{O}$を中心とする半径$1$の円の円周上に点$\mathrm{A}$をとり,点$\mathrm{A}$における接線上に$\mathrm{AB}=2$となる点$\mathrm{B}$をとる.次に,点$\mathrm{B}$から$\mathrm{BC}=2$となるように円周上に点$\mathrm{A}$とは異なる点$\mathrm{C}$をとる.このとき,三角形$\mathrm{OAC}$の面積は$[$16$]$であり,$\sin \angle \mathrm{CAB}=[$17$]$である.
(図は省略)
近畿大学 私立 近畿大学 2012年 第2問
$\angle \mathrm{A}={30}^\circ$,$\mathrm{AB}=\mathrm{AC}=4$をみたす$\triangle \mathrm{ABC}$において,点$\mathrm{C}$を点$\mathrm{P}_1$として,$\triangle \mathrm{P}_1 \mathrm{Q}_1 \mathrm{P}_2$が正三角形になるように,辺$\mathrm{AB}$上に点$\mathrm{Q}_1$,辺$\mathrm{AC}$上に点$\mathrm{P}_2$をとる.次に,図のように,$\triangle \mathrm{P}_2 \mathrm{Q}_2 \mathrm{P}_3$が正三角形になるように,辺$\mathrm{AB}$上に点$\mathrm{Q}_2$,辺$\mathrm{AC}$上に点$\mathrm{P}_3$をとる.以下同様にして,$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n+1}$が正三角形になるように,辺$\mathrm{AB}$上に点$\mathrm{Q}_n$,辺$\mathrm{AC}$上に点$\mathrm{P}_{n+1}$をとる.($n=1,\ 2,\ 3,\ \cdots$)
(図は省略)

$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n+1}$の面積を$S_n$,$\triangle \mathrm{Q}_n \mathrm{P}_{n+1} \mathrm{Q}_{n+1}$の面積を$T_n$とする.

(1)$\mathrm{BC}$と$\mathrm{P}_1 \mathrm{P}_2$の長さを,二重根号を用いない形で求めよ.
(2)$S_1,\ T_1$の値を求めよ.
(3)$S_n$を$n$を用いて表せ.また,$\displaystyle S_n<\frac{1}{1000}$をみたす最小の$n$の値を求めよ.
(4)$T_n$を$n$を用いて表せ.また,和$\displaystyle \sum_{n=1}^5 T_n$の値を求めよ.
吉備国際大学 私立 吉備国際大学 2012年 第3問
下の図において,次のそれぞれの値を求めよ.

(1)線分$\mathrm{AB}$の長さ.
(2)線分$\mathrm{AD}$の長さ.
(3)$\angle \mathrm{ADB}$の大きさ.

(図は省略)
北海道科学大学 私立 北海道科学大学 2012年 第6問
図において$\mathrm{AD}=\sqrt{7}$,$\mathrm{AC}=\sqrt{3}$,$\displaystyle \mathrm{BC}=\frac{4 \sqrt{3}}{5}$,$\angle \mathrm{BCA}={60}^\circ$,$\angle \mathrm{DCA}={90}^\circ$とする.このとき$\sin \angle \mathrm{CAB}=[$1$]$であり,$\mathrm{AB}=[$2$]$である.
(図は省略)
北海道科学大学 私立 北海道科学大学 2012年 第7問
三角形$\mathrm{ABC}$において,$\mathrm{AB}=5$,$\mathrm{BC}=\sqrt{7}$,$\mathrm{CA}=2 \sqrt{3}$のとき,$\angle \mathrm{A}=[$1$]$である.また,この三角形の面積は$[$2$]$である.
北海道科学大学 私立 北海道科学大学 2012年 第8問
円周上に点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$があり,円周をこれらの点で区切って得られる弧$\koa{$\mathrm{BC}$}$,$\koa{$\mathrm{CD}$}$,$\koa{$\mathrm{DE}$}$,$\koa{$\mathrm{EA}$}$の長さは弧$\koa{$\mathrm{AB}$}$の長さのそれぞれ$2$倍,$3$倍,$4$倍,$5$倍となっている.円の中心を$\mathrm{O}$とするとき,$\angle \mathrm{AOB}=[$1$]$であり,$\angle \mathrm{AED}=[$2$]$である.
(図は省略)
大同大学 私立 大同大学 2012年 第7問
$\mathrm{AB}=\mathrm{AC}$,$\mathrm{BC}=10$をみたす二等辺三角形$\mathrm{ABC}$の内心を$\mathrm{I}$,内接円の半径を$\sqrt{5}$とする.

(1)線分$\mathrm{BI}$の長さを求めよ.
(2)点$\mathrm{P}$を$\mathrm{BP}=\mathrm{BI}$,$\mathrm{IP}=2 \sqrt{5}$をみたすようにとる.$\cos \angle \mathrm{IBP}$の値を求めよ.
(3)辺$\mathrm{AB}$の長さを求めよ.
九州産業大学 私立 九州産業大学 2012年 第2問
円$\mathrm{O}$に内接する台形$\mathrm{ABCD}$において,$\mathrm{AB}=4$,$\mathrm{CD}=2$,$\mathrm{AB}$と$\mathrm{CD}$が平行である.対角線$\mathrm{AC}$と$\mathrm{BD}$の交点を$\mathrm{E}$とし,$\angle \mathrm{ABD}={60}^\circ$である.

(1)$\triangle \mathrm{ABE}$の面積は$[ア] \sqrt{[イ]}$である.
(2)辺$\mathrm{AD}$の長さは$\mathrm{AD}=[ウ] \sqrt{[エ]}$である.
(3)台形$\mathrm{ABCD}$の高さは$[オ] \sqrt{[カ]}$である.
(4)台形$\mathrm{ABCD}$の面積は$[キ] \sqrt{[ク]}$である.

(5)円$\mathrm{O}$の半径は$\displaystyle \frac{[ケ] \sqrt{[コサ]}}{[シ]}$である.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の$3$辺の長さがそれぞれ
\[ \mathrm{AB}=5,\quad \mathrm{BC}=7,\quad \mathrm{AC}=4 \sqrt{2} \]
であるとする.この三角形の$\angle \mathrm{ABC}$の大きさを$B$で表すと
\[ \cos B=\frac{[ア]}{[イ]} \]
であり,$\triangle \mathrm{ABC}$の外接円の半径$R$は,
\[ R=\frac{[ウ]}{[エ]} \sqrt{[オ]} \]
である.また,$\angle \mathrm{ABC}$の$2$等分線と$\triangle \mathrm{ABC}$の外接円の交点で$\mathrm{B}$と異なる点を$\mathrm{D}$とする.このとき,
\[ \mathrm{AD}=\sqrt{[カ][キ]} \]
であり,さらに$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$とすると,$\triangle \mathrm{AOD}$の面積は$[ク]$となる.
(2)赤玉$3$個,白玉$4$個,青玉$5$個が入っている袋から,玉を同時に$4$個取り出すとき,次の確率を求めよ.

(i) 取り出した玉の色がすべて青色である確率は$\displaystyle \frac{[ケ]}{[コ][サ]}$である.

(ii) 取り出した玉の色が少なくとも$2$種類である確率は,$\displaystyle \frac{[シ][ス][セ]}{165}$である.

(iii) 取り出した玉の色が$3$種類である確率は,$\displaystyle \frac{[ソ]}{[タ][チ]}$である.
\mon[$\tokeishi$] 取り出した玉に赤玉が少なくとも$2$個含まれている確率は,$\displaystyle \frac{[ツ][テ]}{[ト][ナ]}$である.

(3)関数$f_0(x),\ f_1(x),\ f_2(x)$を
\[ f_0(x)=e^{x^2},\quad f_1(x)=xe^{x^2},\quad f_2(x)=x^2e^{x^2} \]
と定める.ただし,$e$は自然対数の底であり,$e^{x^2}$は$e^{(x^2)}$を表す.
関数$f_n(x) (n=0,\ 1,\ 2)$の導関数を$g_n(x)$とすると,
\setstretch{2.0}
\[ \begin{array}{l}
g_0(x)=[ニ]xe^{x^2} \\
g_1(x)=([ヌ]x^2+[ネ])e^{x^2} \\
g_2(x)=([ノ]x^3+[ハ]x)e^{x^2}
\end{array} \]
\setstretch{1.4}
である.関数$h(x)$を
\[ h(x)=(3x^3+8x^2-15x+4)e^{x^2} \]
と定めると,座標平面で曲線$y=h(x)$は$x$軸と$3$点で交わり,その交点の$x$座標は$-[ヒ]$,$\displaystyle\frac{[フ]}{[ヘ]}$,$[ホ]$である.また,
\[ h(x)=\frac{[マ]}{[ミ]} g_2(x)+[ム]g_1(x)-[メ]g_0(x) \]
であるから,曲線$y=h(x)$と$x$軸で囲まれた図形のうち$x$軸の下にある部分の面積を$S$とすると,
\[ S=\frac{1}{[モ]} \left( [ヤ]e-[ユ][ヨ] e^{\frac{[ラ]}{[リ]}} \right) \]
となる.
スポンサーリンク

「角度」とは・・・

 まだこのタグの説明は執筆されていません。