タグ「角度」の検索結果

63ページ目:全901問中621問~630問を表示)
広島工業大学 私立 広島工業大学 2012年 第7問
$\triangle \mathrm{ABC}$の外接円の点$\mathrm{C}$における接線を$\ell$とする.$\ell$上に$\mathrm{C}$でない点$\mathrm{T}$を,直線$\mathrm{AC}$に関して$\mathrm{B}$と反対の側にとる.$\angle \mathrm{ACT}=60^\circ$,$\mathrm{AB}=2$,$\mathrm{BC}=3$とする.
(図は省略)

(1)辺$\mathrm{AC}$の長さと外接円の半径を求めよ.
(2)円弧$\mathrm{AC}$上に$\mathrm{CD}=1$となる点$\mathrm{D}$をとる.このとき,線分$\mathrm{AD}$の長さを求めよ.
(3)四角形$\mathrm{ABCD}$の面積を求めよ.
東北工業大学 私立 東北工業大学 2012年 第3問
半径$5 \sqrt{2}$の円に内接する三角形$\mathrm{ABC}$がある.$\angle \mathrm{BAC}=45^\circ$,$\angle \mathrm{ACB}=30^\circ$のとき

(1)辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さは
\[ \mathrm{AB}=[][] \sqrt{2},\quad \mathrm{BC}=[][],\quad \mathrm{CA}=[][](1+\sqrt{3}) \]
である.
(2)三角形$\mathrm{ABC}$の面積は$\displaystyle \frac{[][]}{2}(1+\sqrt{3})$である.
(3)辺$\mathrm{BC}$の中点を$\mathrm{M}$とするとき,辺$\mathrm{AM}$の長さの$2$乗は$[][](2+\sqrt{3})$である.
北海学園大学 私立 北海学園大学 2012年 第3問
$\mathrm{AB}=k$,$\displaystyle \mathrm{CA}=\frac{5}{3}k$,$\displaystyle \cos A=\frac{1}{3}$である三角形$\mathrm{ABC}$において,頂点$\mathrm{A}$から直線$\mathrm{BC}$に下ろした垂線と直線$\mathrm{BC}$との交点を$\mathrm{H}$とする.ただし,$k$は定数で,$k>0$とする.

(1)辺$\mathrm{BC}$の長さを$k$を用いて表せ.
(2)線分$\mathrm{BH}$の長さを$k$を用いて表せ.
(3)線分$\mathrm{AH}$上に$\angle \mathrm{BDC}=90^\circ$となる点$\mathrm{D}$をとるとき,線分$\mathrm{BD}$の長さを$k$を用いて表せ.また,$\cos \angle \mathrm{BDA}$の値を求めよ.
北海道薬科大学 私立 北海道薬科大学 2012年 第3問
円$C:x^2+y^2-6x-4y+8=0$と直線$\ell:y=mx-2m-1$($m$は実数)がある.

(1)円$C$の中心$\mathrm{C}$の座標は$([ア],\ [イ])$,半径は$\sqrt{[ウ]}$である.
(2)$\ell$は$m$の値にかかわらず点$\mathrm{A}$を通る.その座標は$([エ],\ [オカ])$である.
(3)$\ell$が$C$と接するのは
\[ m=[キク] \qquad \cdots\cdots① \]

\[ m=\frac{[ケ]}{[コ]} \qquad \cdots\cdots② \]
のときである.
$①$のときの接点を$\mathrm{B}$,$②$のときの接点を$\mathrm{D}$とすると,四角形$\mathrm{ABCD}$から中心角が$\angle \mathrm{BCD}$の扇形を除いた図形の面積は
\[ [サ]-\frac{[シ]}{[ス]} \pi \]
となる.ただし,$0^\circ< \angle \mathrm{BCD}<180^\circ$とする.
昭和大学 私立 昭和大学 2012年 第4問
$\triangle \mathrm{OAB}$において,$\mathrm{OA}=2$,$\mathrm{AB}=3$,$\mathrm{BO}=3$である.$\angle \mathrm{A}$の二等分線と$\mathrm{OB}$との交点を$\mathrm{C}$,辺$\mathrm{OA}$の中点を$\mathrm{D}$,線分$\mathrm{CD}$および$\mathrm{BA}$をそれぞれ延長したときの交点を$\mathrm{E}$とする.以下の各問に答えよ.

(1)$\overrightarrow{\mathrm{OC}}=k \overrightarrow{\mathrm{OB}}$となる実数$k$の値を求めよ.
(2)$\overrightarrow{\mathrm{OE}}=p \overrightarrow{\mathrm{OA}}+q \overrightarrow{\mathrm{OB}}$となる実数$p$と$q$の値をそれぞれ求めよ.
(3)$\triangle \mathrm{OAB}$の面積$S$により$\triangle \mathrm{BCE}$の面積を$aS$と表すとき,実数$a$の値を求めよ.
法政大学 私立 法政大学 2012年 第3問
四角形$\mathrm{ABCD}$は,$4$つの内角がいずれも${180}^\circ$より小さく,$\mathrm{AB}=3$,$\mathrm{BC}=\sqrt{2}$,$\mathrm{CD}=\sqrt{6}$,$\mathrm{AD}=1$を満たすとする.

(1)$\angle \mathrm{BAD}={60}^\circ$のとき,$\cos \angle \mathrm{BCD}$の値を求めよ.
(2)${90}^\circ \leqq \angle \mathrm{BAD}$であり,$\triangle \mathrm{ABD}$の外接円の半径が$\displaystyle \frac{3 \sqrt{6}}{4}$のとき,$\triangle \mathrm{BCD}$の外接円の半径を求めよ.
神戸薬科大学 私立 神戸薬科大学 2012年 第2問
以下の文中の$[ ]$の中にいれるべき数または式等を求めて記入せよ.

(1)平面上に$\triangle \mathrm{ABC}$と点$\mathrm{P}$があり,次の式を満たしている.
\[ 2 \overrightarrow{\mathrm{AP}}+3 \overrightarrow{\mathrm{BP}}+4 \overrightarrow{\mathrm{CP}}=\overrightarrow{\mathrm{0}} \]

(i) $\overrightarrow{\mathrm{AP}}=[ ] \overrightarrow{\mathrm{AB}}+[ ] \overrightarrow{\mathrm{AC}}$である.
(ii) $2$直線$\mathrm{AP}$,$\mathrm{BC}$の交点を$\mathrm{Q}$とする.点$\mathrm{Q}$は線分$\mathrm{BC}$を$[ ]$の比に内分する.また点$\mathrm{P}$は線分$\mathrm{AQ}$を$[ ]$の比に内分する.

(2)円に内接する四角形$\mathrm{ABCD}$において$\mathrm{AB}=1$,$\mathrm{AD}=2$,$\angle \mathrm{BCD}={60}^\circ$であるとき$\mathrm{BD}=[ ]$であり,外接円の半径$R=[ ]$である.また$\mathrm{CD}=3 \mathrm{BC}$のとき$\mathrm{BC}=[ ]$であり,四角形$\mathrm{ABCD}$の面積は$[ ]$である.
法政大学 私立 法政大学 2012年 第3問
三角形$\mathrm{ABC}$において,$\mathrm{CA}=\mathrm{CB}=3$,$\mathrm{AB}=4$である.また,$\overrightarrow{\mathrm{CA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{CB}}=\overrightarrow{b}$とおく.

(1)$\cos \angle \mathrm{BCA}=\frac{[ア]}{[イ]}$である.また,三角形$\mathrm{ABC}$の外接円の半径は$\displaystyle \frac{[ウ] \sqrt{[エ]}}{[オカ]}$である.
(2)$\overrightarrow{a} \cdot \overrightarrow{b}=[キ]$である.
(3)点$\mathrm{C}$を通り直線$\mathrm{AB}$に直交する直線$\ell$と$\mathrm{AB}$の交点を$\mathrm{M}$とすると,
$\displaystyle \overrightarrow{\mathrm{CM}}=\frac{[ク]}{[ケ]} \left( \overrightarrow{a}+\overrightarrow{b} \right)$である.また,点$\mathrm{B}$を通り直線$\mathrm{CA}$に直交する直線と$\ell$の交点を$\mathrm{H}$とすると,$\displaystyle \overrightarrow{\mathrm{CH}}=\frac{[コ]}{[サシ]} \left( \overrightarrow{a}+\overrightarrow{b} \right)$である.
次に,三角形$\mathrm{ABC}$の外心を$\mathrm{O}$とすると,$\displaystyle \mathrm{OH}=\frac{[ス] \sqrt{[セ]}}{[ソタ]}$である.
大阪工業大学 私立 大阪工業大学 2012年 第2問
座標空間内の$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(2 \sqrt{2},\ -2 \sqrt{3},\ 2)$,$\mathrm{B}(\sqrt{6}-\sqrt{2},\ 3+\sqrt{3},\ \sqrt{3}-1)$について,次の問いに答えよ.

(1)$|\overrightarrow{\mathrm{OA}}|$,$|\overrightarrow{\mathrm{OB}}|$,$|\overrightarrow{\mathrm{AB}}|$および$\angle \mathrm{AOB}$を求めよ.ただし,$0 \leqq \angle \mathrm{AOB} \leqq \pi$とする.
(2)点$\mathrm{O}$を中心とし,$2$点$\mathrm{A}$,$\mathrm{B}$を通る円の周上から$\mathrm{A}$,$\mathrm{B}$を含む$6$点をとって正六角形を作る.このとき,$\mathrm{A}$,$\mathrm{B}$以外の$4$頂点の座標を求めよ.
(3)この正六角形の面積$S$を求めよ.
千葉工業大学 私立 千葉工業大学 2012年 第4問
三角形$\mathrm{ABC}$は$\mathrm{AB}=2$,$\mathrm{AC}=7$であり,辺$\mathrm{BC}$を$2:3$に内分する点を$\mathrm{M}$とすると$\angle \mathrm{BAM}={60}^\circ$である.$\mathrm{AM}=x$とするとき,次の問いに答えよ.

(1)三角形$\mathrm{ABM}$の面積を$x$を用いて表すと$\displaystyle \frac{\sqrt{[ア]}}{[イ]}x$である.また,$\mathrm{BM}:\mathrm{MC}=2:3$より,三角形$\mathrm{AMC}$の面積は$\displaystyle \frac{[ウ] \sqrt{[エ]}}{[オ]}x$である.
(2)$\displaystyle \sin \angle \mathrm{MAC}=\frac{[カ] \sqrt{[キ]}}{[クケ]}$であり,$\angle \mathrm{MAC}<{120}^\circ$であることから,$\cos \angle \mathrm{MAC}=\displaystyle\frac{[コサ]}{[シス]}$である.
(3)$\displaystyle \sin \angle \mathrm{BAC}=\frac{[セ] \sqrt{[ソ]}}{[タ]}$である.
(4)三角形$\mathrm{ABC}$の面積は$[チ] \sqrt{[ツ]}$であり,$\displaystyle x=\frac{[テト]}{[ナ]}$である.
スポンサーリンク

「角度」とは・・・

 まだこのタグの説明は執筆されていません。