タグ「角度」の検索結果

57ページ目:全901問中561問~570問を表示)
三重大学 国立 三重大学 2012年 第2問
$\angle$AOBが直角,$\text{OA}:\text{OB}=2:1$である三角形OABがある.$s$は$0<s<1$とし,辺ABを$s:(1-s)$に内分する点をPとし,OPを$s:(1-s)$に内分する点をQとする.また,線分AQの延長とOBの交点をRとする.$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{BQ}}$が直交するとき,以下の問いに答えよ.

(1)$s$の値を求めよ.
(2)$\overrightarrow{\mathrm{AR}}=t\overrightarrow{\mathrm{AQ}}$とおくとき,$t$の値を求めよ.
(3)三角形OQRの面積と三角形BPQの面積の比を,最も簡単な整数の比で表せ.
島根大学 国立 島根大学 2012年 第1問
$\triangle \mathrm{ABC}$において,$\mathrm{BC}=5,\ \mathrm{CA}=8,\ \angle \mathrm{C}=60^\circ$とする.$\triangle \mathrm{ABC}$の外接円を$\mathrm{O}$とするとき,次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の面積を求めよ.
(2)円$\mathrm{O}$の半径を求めよ.
(3)$\triangle \mathrm{ABC}$と相似な$\triangle \mathrm{DEF}$に円$\mathrm{O}$が内接しているとき,$\triangle \mathrm{ABC}$と$\triangle \mathrm{DEF}$の相似比を求めよ.
島根大学 国立 島根大学 2012年 第2問
$\triangle \mathrm{ABC}$において,$\mathrm{BC}=5,\ \mathrm{CA}=8,\ \angle \mathrm{C}=60^\circ$とする.$\triangle \mathrm{ABC}$の外接円を$\mathrm{O}$とするとき,次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の面積を求めよ.
(2)円$\mathrm{O}$の半径を求めよ.
(3)$\triangle \mathrm{ABC}$と相似な$\triangle \mathrm{DEF}$に円$\mathrm{O}$が内接しているとき,$\triangle \mathrm{ABC}$と$\triangle \mathrm{DEF}$の相似比を求めよ.
愛知教育大学 国立 愛知教育大学 2012年 第7問
座標平面上の3点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(2,\ 0)$,$\mathrm{B}(3,\ 0)$について,$\angle \mathrm{PAB}=3 \angle \mathrm{POB}$となる$y>0$の領域にある点$\mathrm{P}$を考える.$r=\mathrm{OP}$,$\theta=\angle \mathrm{POB}$とおくとき,以下の問いに答えよ.

(1)$r$を$\theta$を用いて表せ.
(2)$\displaystyle \lim_{\theta \to +0}r$を求めよ.
(3)点$\mathrm{P}$の座標を$(x,\ y)$で表すとき,$y$を$x$の式で表せ.
福井大学 国立 福井大学 2012年 第2問
四面体$\mathrm{OABC}$において,$\mathrm{OA}=2$,$\mathrm{OB}=\sqrt{2}$,$\mathrm{OC}=1$であり,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{2}$,$\displaystyle \angle \mathrm{AOC}=\frac{\pi}{3}$,$\displaystyle \angle \mathrm{BOC}=\frac{\pi}{4}$であるとする.また,3点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を含む平面を$\alpha$とし,点$\mathrm{C}$から平面$\alpha$に下ろした垂線と$\alpha$との交点を$\mathrm{H}$,平面$\alpha$に関して$\mathrm{C}$と対称な点を$\mathrm{K}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{b} \cdot \overrightarrow{c},\ \overrightarrow{c} \cdot \overrightarrow{a}$を求めよ.
(2)$\overrightarrow{\mathrm{OH}},\ \overrightarrow{\mathrm{OK}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,平面$\alpha$上の点$\mathrm{P}$で$\mathrm{GP}+\mathrm{PC}$を最小にする点を$\mathrm{P}_0$とする.このとき,$\overrightarrow{\mathrm{OP}}_0$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.また,点$\mathrm{P}_0$は$\triangle \mathrm{OAB}$の周または内部にあることを示せ.
福井大学 国立 福井大学 2012年 第2問
四面体$\mathrm{OABC}$において,$\mathrm{OA}=2$,$\mathrm{OB}=\sqrt{2}$,$\mathrm{OC}=1$であり,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{2}$,$\displaystyle \angle \mathrm{AOC}=\frac{\pi}{3}$,$\displaystyle \angle \mathrm{BOC}=\frac{\pi}{4}$であるとする.また,3点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を含む平面を$\alpha$とし,点$\mathrm{C}$から平面$\alpha$に下ろした垂線と$\alpha$との交点を$\mathrm{H}$,平面$\alpha$に関して$\mathrm{C}$と対称な点を$\mathrm{D}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OH}},\ \overrightarrow{\mathrm{OD}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)四面体$\mathrm{OABC}$の体積を求めよ.
(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,面$\mathrm{OAB}$上の点$\mathrm{P}$で$\mathrm{CP}+\mathrm{PG}$を最小にする点を$\mathrm{P}_0$とする.このとき,$\overrightarrow{\mathrm{OP}}_0$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表し,$\mathrm{CP}_0+\mathrm{P}_0 \mathrm{G}$の値を求めよ.
奈良教育大学 国立 奈良教育大学 2012年 第2問
三角形$\mathrm{ABC}$において,次の関係が成り立つとき,三角形$\mathrm{ABC}$は直角三角形,または,二等辺三角形であることを示せ.
\[ a \cos A=b \cos B \]
ただし,$a,\ b$はそれぞれ三角形$\mathrm{ABC}$の辺$\mathrm{BC}$,$\mathrm{AC}$の長さを表し,$A,\ B$はそれぞれ三角形$\mathrm{ABC}$の$\angle \mathrm{BAC},\ \angle \mathrm{ABC}$を表す.
長崎大学 国立 長崎大学 2012年 第1問
四面体$\mathrm{OABC}$において
\[ \mathrm{OA}=1, \mathrm{OB}=3, \mathrm{OC}=2, \angle \mathrm{AOB}=90^\circ, \angle \mathrm{AOC}=\angle \mathrm{BOC}=120^\circ \]
とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.次の問いに答えよ.

(1)平面$\mathrm{ABC}$上に点$\mathrm{H}$をとり,$s,\ t,\ u$を実数として$\overrightarrow{\mathrm{OH}}=s \overrightarrow{a}+t \overrightarrow{b}+u \overrightarrow{c}$とおく.このとき,$s+t+u=1$となることを示せ.
(2)(1)の$\overrightarrow{\mathrm{OH}}$が平面$\mathrm{ABC}$に垂直であるとき,$s,\ t,\ u$の値をそれぞれ求めよ.
(3)平面$\mathrm{OAB}$上に点$\mathrm{K}$をとり,$\overrightarrow{\mathrm{CK}}$が平面$\mathrm{OAB}$に垂直であるとする.このとき,$\overrightarrow{\mathrm{OK}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表し,$\overrightarrow{\mathrm{CK}}$の大きさと四面体$\mathrm{OABC}$の体積を求めよ.
福井大学 国立 福井大学 2012年 第1問
四面体$\mathrm{OABC}$において,$\mathrm{OA}=2$,$\mathrm{OB}=\sqrt{2}$,$\mathrm{OC}=1$であり,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{2}$,$\displaystyle \angle \mathrm{AOC}=\frac{\pi}{3}$,$\displaystyle \angle \mathrm{BOC}=\frac{\pi}{4}$であるとする.また,3点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を含む平面を$\alpha$とし,点$\mathrm{C}$から平面$\alpha$に下ろした垂線と$\alpha$との交点を$\mathrm{H}$,平面$\alpha$に関して$\mathrm{C}$と対称な点を$\mathrm{D}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OH}},\ \overrightarrow{\mathrm{OD}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)四面体$\mathrm{OABC}$の体積を求めよ.
(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,面$\mathrm{OAB}$上の点$\mathrm{P}$で$\mathrm{CP}+\mathrm{PG}$を最小にする点を$\mathrm{P}_0$とする.このとき,$\overrightarrow{\mathrm{OP}}_0$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表し,$\mathrm{CP}_0+\mathrm{P}_0 \mathrm{G}$の値を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2012年 第2問
$xyz$空間内に四面体$\mathrm{PABC}$がある.$\triangle \mathrm{ABC}$は$xy$平面内にある鋭角三角形とし,頂点$\mathrm{P}$の$z$座標は正とする.$\mathrm{P}$から$xy$平面に下ろした垂線を$\mathrm{PH}$とし,$\mathrm{H}$は$\triangle \mathrm{ABC}$の内部にあるとする.$\mathrm{H}$から直線$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$に下ろした垂線をそれぞれ$\mathrm{HK}_1$,$\mathrm{HK}_2$,$\mathrm{HK}_3$とする.そのとき$\mathrm{PK}_1 \perp \mathrm{AB}$,$\mathrm{PK}_2 \perp \mathrm{BC}$,$\mathrm{PK}_3 \perp \mathrm{CA}$である.$\angle \mathrm{PK}_1 \mathrm{H}=\alpha_1$,$\angle \mathrm{PK}_2 \mathrm{H}=\alpha_2$,$\angle \mathrm{PK}_3 \mathrm{H}=\alpha_3$とし,$\triangle \mathrm{PAB}$,$\triangle \mathrm{PBC}$,$\triangle \mathrm{PCA}$の面積をそれぞれ$S_1,\ S_2,\ S_3$とする.

(1)$\triangle \mathrm{HAB}$の面積を$\alpha_1,\ S_1$を用いて表せ.
(2)3つのベクトル$\overrightarrow{l_1}$,$\overrightarrow{l_2}$,$\overrightarrow{l_3}$は,大きさがそれぞれ$S_1,\ S_2,\ S_3$であり,向きがそれぞれ平面$\mathrm{PAB}$,平面$\mathrm{PBC}$,平面$\mathrm{PCA}$に垂直であるとする.ただし,$\overrightarrow{l_1}$,$\overrightarrow{l_2}$,$\overrightarrow{l_3}$の$z$成分はすべて正とする.このとき,$\overrightarrow{l_1}+\overrightarrow{l_2}+\overrightarrow{l_3}$の$z$成分は$\triangle \mathrm{ABC}$の面積に等しいことを示せ.
(3)3辺$\mathrm{AB},\ \mathrm{BC},\ \mathrm{CA}$の長さの比$\mathrm{AB}:\mathrm{BC}:\mathrm{CA}$を,$\alpha_1,\ \alpha_2,\ \alpha_3,\ S_1,\ S_2,\ S_3$を用いて表せ.
スポンサーリンク

「角度」とは・・・

 まだこのタグの説明は執筆されていません。