タグ「角度」の検索結果

56ページ目:全901問中551問~560問を表示)
佐賀大学 国立 佐賀大学 2012年 第5問
$\triangle \mathrm{ABC}$において,$\mathrm{OA}=a$,$\mathrm{OB}=b$,$\angle \mathrm{AOB}=\theta$とおく.ただし,$a \geqq b$および$0^\circ < \theta < 90^\circ$とする.点$\mathrm{B}$から辺$\mathrm{OA}$に下ろした垂線の足を$\mathrm{A}_1$とする.また点$\mathrm{A}_1$を通って辺$\mathrm{AB}$に平行な直線と,辺$\mathrm{OB}$との交点を$\mathrm{B}_1$とする.次に点$\mathrm{B}_1$から辺$\mathrm{OA}_1$に下ろした垂線の足を$\mathrm{A}_2$とし,点$\mathrm{A}_2$を通って辺$\mathrm{A}_1 \mathrm{B}_1$に平行な直線と,辺$\mathrm{OB}_1$との交点を$\mathrm{B}_2$とする.以下,この操作を続け,三角形の列
\[ \triangle \mathrm{OA}_1 \mathrm{B}_1,\ \triangle \mathrm{OA}_2 \mathrm{B}_2,\ \cdots,\ \triangle \mathrm{OA}_n \mathrm{B}_n \]
をとる.このとき,次の問いに答えよ.

(1)$\triangle \mathrm{OA}_n \mathrm{B}_n$は,$\triangle \mathrm{OAB}$に相似であることを示せ.
(2)$\displaystyle \frac{\mathrm{A}_n \mathrm{B}_n}{\mathrm{A}_{n-1} \mathrm{B}_{n-1}}$を$a,\ b,\ \theta$の式で表せ.
(3)$\triangle \mathrm{OA}_k \mathrm{B}_k$の面積を$S_k$とする.$a=2,\ b=1,\ \theta=30^\circ$のとき,$S_1+S_2+\cdots + S_n$を$n$の式で表せ.
岐阜大学 国立 岐阜大学 2012年 第1問
四角形$\mathrm{ABCD}$において$\mathrm{AB}=\mathrm{CD}=1,\ \mathrm{BC}=\mathrm{DA}=3$であり,対角線$\mathrm{AC}$,$\mathrm{BD}$の長さをそれぞれ$x,\ y$とする.以下の問に答えよ.

(1)四角形$\mathrm{ABCD}$の面積$S$を$x$を用いて表せ.また,$S$の最大値$S_0$を求めよ.
(2)面積が$\displaystyle \frac{1}{3}S_0$である四角形$\mathrm{ABCD}$に対して$x^2,\ y^2$の値を求めよ.ただし,$x \leqq y$とし,$S_0$は(1)で求めたものとする.
(3)$\cos \angle \mathrm{ACB}$を$x$で表せ.また,$\angle \mathrm{ACB}$が最大となる$x$の値を求めよ.
岐阜大学 国立 岐阜大学 2012年 第1問
四角形$\mathrm{ABCD}$において$\mathrm{AB}=\mathrm{CD}=1,\ \mathrm{BC}=\mathrm{DA}=3$であり,対角線$\mathrm{AC}$,$\mathrm{BD}$の長さをそれぞれ$x,\ y$とする.以下の問に答えよ.

(1)四角形$\mathrm{ABCD}$の面積$S$を$x$を用いて表せ.また,$S$の最大値$S_0$を求めよ.
(2)面積が$\displaystyle \frac{1}{3}S_0$である四角形$\mathrm{ABCD}$に対して$x^2,\ y^2$の値を求めよ.ただし,$x \leqq y$とし,$S_0$は(1)で求めたものとする.
(3)$\cos \angle \mathrm{ACB}$を$x$で表せ.また,$\angle \mathrm{ACB}$が最大となる$x$の値を求めよ.
宮崎大学 国立 宮崎大学 2012年 第3問
四面体OABCにおいて,
\[ \text{OA}=\text{OC}=4, \text{OB}=3, \angle \text{AOB}=\angle \text{BOC}=\angle \text{COA}=60^\circ \]
とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の各問に答えよ.

(1)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$の値を求めよ.
(2)平面ABC上の点Dを,直線ODが平面ABCに垂直に交わるようにとる.$\overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OA}}+p\overrightarrow{\mathrm{AB}}+q\overrightarrow{\mathrm{AC}}$とおくとき,$p$と$q$の値を求めよ.
(3)四面体OABCの体積を求めよ.
宮崎大学 国立 宮崎大学 2012年 第2問
四面体OABCにおいて,
\[ \text{OA}=\text{OC}=4, \text{OB}=3, \angle \text{AOB}=\angle \text{BOC}=\angle \text{COA}=60^\circ \]
とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の各問に答えよ.

(1)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$の値を求めよ.
(2)平面ABC上の点Dを,直線ODが平面ABCに垂直に交わるようにとる.$\overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OA}}+p\overrightarrow{\mathrm{AB}}+q\overrightarrow{\mathrm{AC}}$とおくとき,$p$と$q$の値を求めよ.
(3)四面体OABCの体積を求めよ.
宮崎大学 国立 宮崎大学 2012年 第2問
四面体OABCにおいて,
\[ \text{OA}=\text{OC}=4, \text{OB}=3, \angle \text{AOB}=\angle \text{BOC}=\angle \text{COA}=60^\circ \]
とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の各問に答えよ.

(1)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$の値を求めよ.
(2)平面ABC上の点Dを,直線ODが平面ABCに垂直に交わるようにとる.$\overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OA}}+p\overrightarrow{\mathrm{AB}}+q\overrightarrow{\mathrm{AC}}$とおくとき,$p$と$q$の値を求めよ.
(3)四面体OABCの体積を求めよ.
宮崎大学 国立 宮崎大学 2012年 第5問
右図のように,$\triangle \mathrm{ABC}$の内部に点$\mathrm{P}$をとる.$\triangle \mathrm{PAB}$,$\triangle \mathrm{PBC}$, \\
$\triangle \mathrm{PCA}$の面積をそれぞれ$S_{\mathrm{AB}}$,$S_{\mathrm{BC}}$,$S_{\mathrm{CA}}$とするとき,次の各問 \\
に答えよ.

(1)点$\mathrm{P}$が$\triangle \mathrm{ABC}$の内心で,${S_{\mathrm{AB}}}^2+{S_{\mathrm{CA}}}^2={S_{\mathrm{BC}}}^2$が成り立つとき, \\
$\angle \mathrm{BAC}$の大きさを求めよ.
(2)${S_{\mathrm{AB}}}={S_{\mathrm{BC}}}={S_{\mathrm{CA}}}$が成り立つとき,点$\mathrm{P}$は$\triangle \mathrm{ABC}$の重心であることを示せ.
\img{735_3040_2012_1}{40}
鹿児島大学 国立 鹿児島大学 2012年 第3問
平面上に互いに異なる3点O,A,Bがあり,それらは同一直線上にはないものとする.$\text{OA}=2,\ \text{OB}=3$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,その内積を$\overrightarrow{a} \cdot \overrightarrow{b}=t$とおく.$\angle \text{AOB}$の二等分線と線分ABとの交点をCとし,直線OAに関して点Bと対称な点をDとする.このとき,次の各問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OD}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OC}} \perp \overrightarrow{\mathrm{OD}}$となるとき,$\angle \text{AOB}$とOCを求めよ.
鹿児島大学 国立 鹿児島大学 2012年 第3問
平面上に互いに異なる3点O,A,Bがあり,それらは同一直線上にはないものとする.$\text{OA}=2,\ \text{OB}=3$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,その内積を$\overrightarrow{a} \cdot \overrightarrow{b}=t$とおく.$\angle \text{AOB}$の二等分線と線分ABとの交点をCとし,直線OAに関して点Bと対称な点をDとする.このとき,次の各問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OD}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OC}} \perp \overrightarrow{\mathrm{OD}}$となるとき,$\angle \text{AOB}$とOCを求めよ.
鹿児島大学 国立 鹿児島大学 2012年 第2問
平面上に互いに異なる3点O,A,Bがあり,それらは同一直線上にはないものとする.$\text{OA}=2,\ \text{OB}=3$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,その内積を$\overrightarrow{a} \cdot \overrightarrow{b}=t$とおく.$\angle \text{AOB}$の二等分線と線分ABとの交点をCとし,直線OAに関して点Bと対称な点をDとする.このとき,次の各問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OD}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OC}} \perp \overrightarrow{\mathrm{OD}}$となるとき,$\angle \text{AOB}$とOCを求めよ.
スポンサーリンク

「角度」とは・・・

 まだこのタグの説明は執筆されていません。