タグ「角度」の検索結果

55ページ目:全901問中541問~550問を表示)
千葉大学 国立 千葉大学 2012年 第7問
横$2a$,縦$2b$の長方形を長方形の中心のまわりに角$\theta$だけ回転させる.回転後の長方形ともとの長方形とが重なり合う部分の面積$S(\theta)$を求めよ.ただし,長方形の中心とはその2つの対角線の交点とし,長方形はそれを含む平面内で回転するものとする.また,回転角$\theta$は0以上,長方形のいずれかの頂点が隣の頂点に達するまでの角度以下に取るものとする.
滋賀大学 国立 滋賀大学 2012年 第1問
長さ1の線分ABを直径とする円周上の点をPとするとき,次の問いに答えよ.ただし,PはA,Bとは異なるものとする.

(1)$\angle \text{PAB}=\theta$とするとき,線分AP,BPの長さを$\theta$を用いて表せ.
(2)PからABに下ろした垂線とABとの交点をCとする.$\triangle$APCと$\triangle$BPCの周の長さの和$L$を$\theta$を用いて表せ.
(3)$L$の最大値を求め,そのときの$\theta$の値を求めよ.
九州工業大学 国立 九州工業大学 2012年 第2問
四面体OABCは$\displaystyle \text{OA}=1,\ \text{OB}=\sqrt{15},\ \text{OC}=2,\ \angle \text{AOB}=\frac{\pi}{2},\ \angle \text{AOC}=\frac{\pi}{3}$を満たしている.線分OAとOBを$s:1-s \ (0<s<1)$に内分する点をそれぞれP,Qとし,$\triangle$CPQの重心をGとする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c},\ \angle \text{BOC}=\theta \ (0<\theta < \pi)$として,次に答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$と$s$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{OG}}$は平面ABCに垂直であるとする.

(3)$s$と$\cos \theta$の値を求めよ.
(4)線分OGとBCの長さ,および$\angle \text{BAC}$を求めよ.
(5)四面体OABCの体積$V$を求めよ.
九州工業大学 国立 九州工業大学 2012年 第3問
$\alpha>1,\ x>0$とする.Oを原点とする座標平面上に3点A$(0,\ 1)$,B$(0,\ \alpha)$,P$(\sqrt{x},\ 0)$がある.次に答えよ.

(1)$\sin \angle \text{OPB}$と$\sin \angle \text{APB}$を$\alpha$と$x$を用いて表せ.
(2)$\sin \angle \text{APB}$を$x$の関数と考え,その関数を$f(x)$とおく.$f(x)$の最大値を$\alpha$を用いて表せ.
(3)(2)で求めた最大値が$\displaystyle \frac{1}{2}$となる$\alpha$を求めよ.
岩手大学 国立 岩手大学 2012年 第4問
$\angle \text{BAC}=90^\circ$である直角三角形ABCにおいて,辺ABの中点をMとする.また,辺BCを$s:(1-s)$に内分する点をPとし,線分APとCMとの交点をRとする.ただし,$0<s<1$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{a},\ \overrightarrow{\mathrm{AC}}=\overrightarrow{b}$とおくとき,次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{AR}}$を$s,\ \overrightarrow{a}$および$\overrightarrow{b}$で表せ.
(2)$|\overrightarrow{a}|=1,\ |\overrightarrow{b}|=\sqrt{2}$とする.線分APとCMが直交するときの$s$の値を求めよ.また,このときの$\overrightarrow{\mathrm{AR}}$の大きさを求めよ.
岩手大学 国立 岩手大学 2012年 第4問
$\angle \text{BAC}=90^\circ$である直角三角形ABCにおいて,辺ABの中点をMとする.また,辺BCを$s:(1-s)$に内分する点をPとし,線分APとCMとの交点をRとする.ただし,$0<s<1$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{a},\ \overrightarrow{\mathrm{AC}}=\overrightarrow{b}$とおくとき,次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{AR}}$を$s,\ \overrightarrow{a}$および$\overrightarrow{b}$で表せ.
(2)$|\overrightarrow{a}|=1,\ |\overrightarrow{b}|=\sqrt{2}$とする.線分APとCMが直交するときの$s$の値を求めよ.また,このときの$\overrightarrow{\mathrm{AR}}$の大きさを求めよ.
奈良女子大学 国立 奈良女子大学 2012年 第1問
$x$を正の実数とする.三角形$\mathrm{ABC}$において,$\mathrm{AB}=x,\ \mathrm{BC}=x+1,\ \mathrm{CA}=x+2$とする.次の問いに答えよ.

(1)$x$のとり得る値の範囲を求めよ.
(2)$\angle \mathrm{B}=\theta$とおくとき,$\cos \theta$を$x$を用いて表せ.
(3)三角形$\mathrm{ABC}$が鈍角三角形となる$x$の値の範囲を求めよ.
高知大学 国立 高知大学 2012年 第3問
点Oを中心とする半径1の円に内接する正十角形の隣り合う頂点をA,Bとする.また,$\angle \text{OAB}$の二等分線と直線OBの交点をCとする.次の問いに答えよ.

(1)$\triangle$ABCと$\triangle$OABは相似になることを示せ.
(2)辺ABの長さを求めよ.
(3)$\displaystyle \cos \frac{2\pi}{5}$を求めよ.
(4)半径1の円に内接する正五角形の一辺の長さを求めよ.
大分大学 国立 大分大学 2012年 第2問
三角形OABで$\displaystyle \overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ |\overrightarrow{a}|=|\overrightarrow{b}|=1,\ \angle \text{AOB}=\frac{\pi}{6}$とする.このとき次の問いに答えよ.

(1)三角形OABの外接円の中心(外心)Qの位置ベクトル$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表せ.
(2)頂点OとAからそれぞれの対辺ABとOBに下ろした垂線の交点(垂心)をHとするとき,$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表せ.
(3)$|\overrightarrow{\mathrm{AB}}|$の値を求めよ.
(4)三角形OABの内接円の中心(内心)Pの位置ベクトル$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表せ.
大分大学 国立 大分大学 2012年 第3問
円周上の点Aにおける円の接線上に点Aと異なる点Pをとる.点Pを通る直線が点Pから近い順に2点B,Cで円と交わっている.$\angle \text{APB}$の二等分線と線分AB,ACとの交点をそれぞれD,Eとする.$\text{PA}:\text{PB}=r:1-r$とおき,$\text{BD}=s,\ \text{CE}=t$とおく.ただし,$0<r<1$とする.

(1)線分ADの長さを$r$と$s$で表しなさい.
(2)$\text{PB}:\text{PC}=2:3$となるとき,$r$の値を求めなさい.
(3)(2)のとき,線分AEの長さを$t$で表しなさい.
スポンサーリンク

「角度」とは・・・

 まだこのタグの説明は執筆されていません。