タグ「角度」の検索結果

50ページ目:全901問中491問~500問を表示)
神戸薬科大学 私立 神戸薬科大学 2013年 第3問
円周上の点$\mathrm{A}$での接線を$\ell$とする.直線が接線$\ell$と点$\mathrm{B}$で,円と$2$点$\mathrm{C}$,$\mathrm{D}$で$\mathrm{BC}=9$,$\mathrm{BD}=4$となるように交わっている.$\angle \mathrm{ABC}=\theta$とする.
(図は省略)

(1)線分$\mathrm{AB}$の長さは$[ ]$である.
(2)$\triangle \mathrm{ABC}$の面積を$\theta$を用いて表すと$[ ]$である.
大阪薬科大学 私立 大阪薬科大学 2013年 第2問
次の問いに答えなさい.

実数$t$に対し,一辺の長さが$1$の正三角形$\mathrm{OAB}$の辺$\mathrm{OA}$を$t:(1-t)$に内分する点を$\mathrm{P}$,辺$\mathrm{AB}$を$2t:(1-2t)$に内分する点を$\mathrm{Q}$,辺$\mathrm{BO}$を$3t:(1-3t)$に内分する点を$\mathrm{R}$とする.ただし,$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$は正三角形$\mathrm{OAB}$の辺上にあり,いずれの頂点とも一致しないものとする.

(1)$t$がとる値の範囲は$[ ]$である.
(2)$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.

(i) $\overrightarrow{a} \cdot \overrightarrow{b}=[ ]$である.
(ii) $\overrightarrow{\mathrm{PQ}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を使って表すと,$\overrightarrow{\mathrm{PQ}}=[ ]$となる.
(iii) $\displaystyle \angle \mathrm{QPR}=\frac{\pi}{2}$となるのは,$t=[ ]$のときである.

(3)三角形$\mathrm{PQR}$の面積を$S$とする.$S$を$t$を使って表し,また$S$の最小値を求めなさい.
近畿大学 私立 近畿大学 2013年 第1問
$xy$平面に正三角形$\mathrm{ABC}$があり,$3$頂点の座標はそれぞれ$\mathrm{A}(0,\ \sqrt{3})$,$\mathrm{B}(-1,\ 0)$,$\mathrm{C}(1,\ 0)$となっている.線分$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,線分$\mathrm{CA}$の中点を$\mathrm{E}$とする.また$\mathrm{P}$は辺$\mathrm{AB}$上を動く点とし,$\mathrm{Q}$は辺$\mathrm{AC}$上を動く点とする.

(1)直線$\mathrm{AB}$に関して$\mathrm{D}$と対称な点$\mathrm{T}$の座標は$([ア],\ [イ])$である.
(2)線分$\mathrm{TE}$を$s:1-s$の比に内分する点を$\mathrm{R}$とする.$\overrightarrow{\mathrm{BR}}=m \overrightarrow{\mathrm{BA}}+n \overrightarrow{\mathrm{BC}}$と表すと$m=[ウ]$,$n=[エ]$となる.ただし$m,\ n$は$s$の$1$次式である.また$s=[オ]$のとき$\mathrm{R}$は線分$\mathrm{AB}$上にある.
(3)$\mathrm{DP}+\mathrm{PE}$の最小値は$[カ]$である.またそのとき$\mathrm{BP}=[キ]$となる.
(4)$\mathrm{DP}+\mathrm{PQ}+\mathrm{QD}$の最小値は$[ク]$である.またそのとき$\tan \angle \mathrm{BPQ}=[ケ]$となる.
広島工業大学 私立 広島工業大学 2013年 第4問
$\triangle \mathrm{ABC}$において,$\mathrm{BC}=1+\sqrt{6}$,$\mathrm{CA}=2$,$\displaystyle \angle \mathrm{C}=\frac{\pi}{3}$とする.

(1)$\triangle \mathrm{ABC}$の面積$S$を求めよ.
(2)辺$\mathrm{AB}$の長さを求めよ.
(3)$\triangle \mathrm{ABC}$の内接円の半径$r$を求めよ.
大阪工業大学 私立 大阪工業大学 2013年 第2問
$\triangle \mathrm{OAB}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,$|\overrightarrow{a}|=\sqrt{3}$,$\displaystyle |\overrightarrow{b}|=\frac{2}{\sqrt{3}}$,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$とする.さらに,辺$\mathrm{OA}$の中点を$\mathrm{M}$,辺$\mathrm{OB}$の中点を$\mathrm{N}$とし,点$\mathrm{M}$を通り辺$\mathrm{OA}$に垂直な直線と点$\mathrm{N}$を通り辺$\mathrm{OB}$に垂直な直線との交点を$\mathrm{P}$とする.このとき,次の空所を埋めよ.

(1)$\overrightarrow{a} \cdot \overrightarrow{b}=[ア]$である.
(2)$x,\ y$を実数とし,$\overrightarrow{\mathrm{OP}}=x \overrightarrow{a}+y \overrightarrow{b}$とおくと,$\overrightarrow{\mathrm{MP}}=(x-[イ]) \overrightarrow{a}+y \overrightarrow{b}$と表されるので,$\overrightarrow{\mathrm{MP}} \perp \overrightarrow{a}$より$x,\ y$の関係式は$3x+y=[ウ]$である.
また,$\overrightarrow{\mathrm{NP}} \perp \overrightarrow{b}$より,$x,\ y$の関係式は$[エ]=2$である.したがって,$x=[オ]$,$y=[カ]$である.
大阪工業大学 私立 大阪工業大学 2013年 第2問
$\triangle \mathrm{OAB}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,$|\overrightarrow{a}|=\sqrt{3}$,$\displaystyle |\overrightarrow{b}|=\frac{2}{\sqrt{3}}$,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$とする.さらに,辺$\mathrm{OA}$の中点を$\mathrm{M}$,辺$\mathrm{OB}$の中点を$\mathrm{N}$とし,点$\mathrm{M}$を通り辺$\mathrm{OA}$に垂直な直線と点$\mathrm{N}$を通り辺$\mathrm{OB}$に垂直な直線との交点を$\mathrm{P}$とする.このとき,次の空所を埋めよ.

(1)$\overrightarrow{a} \cdot \overrightarrow{b}=[ア]$である.
(2)$x,\ y$を実数とし,$\overrightarrow{\mathrm{OP}}=x \overrightarrow{a}+y \overrightarrow{b}$とおくと,$\overrightarrow{\mathrm{MP}}=(x-[イ]) \overrightarrow{a}+y \overrightarrow{b}$と表されるので,$\overrightarrow{\mathrm{MP}} \perp \overrightarrow{a}$より$x,\ y$の関係式は$3x+y=[ウ]$である.
また,$\overrightarrow{\mathrm{NP}} \perp \overrightarrow{b}$より,$x,\ y$の関係式は$[エ]=2$である.したがって,$x=[オ]$,$y=[カ]$である.
産業医科大学 私立 産業医科大学 2013年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)$100$円,$50$円,$10$円の硬貨がそれぞれたくさんあるとする.ある品物を買うのに$2300$円かかるとき,このお金による支払い方の総数は$[ ]$である.
(2)整式$P(x)$を$x^2-4x+3$で割ったときの余りは$x+1$であり,$x^2-3x+2$で割ったときの余りは$3x-1$である.$P(x)$を$x^3-6x^2+11x-6$で割ったときの余りは$[ ]$である.
(3)数列の極限$\displaystyle \lim_{n \to \infty} \frac{\sum_{k=1}^{2n} (k+n)^2}{\sum_{k=1}^{2n} k^2}$の値は$[ ]$である.
(4)$\sqrt{x}+\sqrt{y}=1$で表される座標平面上の曲線を$C$とする.曲線$C$上の$x$座標が$s (0<s<1)$である点における接線を$\ell$とする.接線$\ell$と曲線$C$および$x$軸,$y$軸とで囲まれた部分を,$x$軸のまわりに$1$回転してできる回転体の体積の最小値は$[ ]$である.また,そのときの$s$の値は$[ ]$である.
(5)原点を$\mathrm{O}$とする座標平面上の$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ 1)$を結ぶ線分上に点$\mathrm{P}$がある.$\theta=\angle \mathrm{AOP}$とし,線分$\mathrm{OP}$の長さを$r$とするとき,$r$は$\theta$の関数として$r=f(\theta)$と表せる.このとき定積分$\displaystyle \int_0^{\frac{\pi}{2}} f(\theta) \, d\theta$の値は$[ ]$であり,$\displaystyle \int_0^{\frac{\pi}{2}} f(\theta)^2 \cos \theta \, d\theta$の値は$[ ]$である.
(6)$\mathrm{A}$が$1$枚のカードを,$\mathrm{B}$が$4$枚のカードを持っている.表が出る確率と裏が出る確率がそれぞれ$\displaystyle \frac{1}{2}$の偏りのないコインを投げて,表が出れば$\mathrm{A}$は$\mathrm{B}$からカードを$1$枚もらう.裏が出れば$\mathrm{A}$は$\mathrm{B}$にカードを$1$枚わたす.ただし,手もとにカードがなければわたさなくてよい.この試行を$4$回くり返した後,$\mathrm{A}$の手もとに残るカードの枚数の期待値は$[ ]$である.
成城大学 私立 成城大学 2013年 第2問
$\triangle \mathrm{ABC}$において,
\[ \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{BC}}=-5,\quad \overrightarrow{\mathrm{BC}} \cdot \overrightarrow{\mathrm{CA}}=-6,\quad \overrightarrow{\mathrm{CA}} \cdot \overrightarrow{\mathrm{AB}}=-3,\quad \angle \mathrm{BAC}=\theta \]
であるとき,$\triangle \mathrm{ABC}$の面積を求める.空欄にあてはまる値を解答欄に記入せよ.

条件より,$\mathrm{AB}=[ア]$,$\mathrm{AC}=[イ]$となるから,$\cos \theta=[ウ]$となる.よって,$\sin \theta=[エ]$となるので,$\triangle \mathrm{ABC}$の面積は$[オ]$となる.
成城大学 私立 成城大学 2013年 第2問
$\triangle \mathrm{ABC}$の面積を$S$,$\angle \mathrm{BAC}=\alpha$とし,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$とする.さらに,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$を$1$辺とする正三角形の面積をそれぞれ$S_A,\ S_B,\ S_C$とする.ただし,$\alpha \neq {90}^\circ$とする.

(1)$a$を用いて$S_A$を表せ.
(2)次の等式が成り立つことを証明せよ.
\[ S_A=S_B+S_C-\frac{\sqrt{3}}{\tan \alpha}S \]
東京女子大学 私立 東京女子大学 2013年 第1問
座標平面における放物線$\displaystyle C_1:y=\frac{1}{2}x^2+\frac{1}{2}$,および円$C_2:x^2+y^2=2$について,以下の設問に答えよ.

(1)$C_1$と$C_2$の交点を$\mathrm{P}$,$\mathrm{Q}$とするとき,$\angle \mathrm{POQ}$を求めよ.ただし,$\mathrm{O}$は座標平面における原点をあらわす.
(2)$C_1$と$C_2$で囲まれた部分の面積を求めよ.
スポンサーリンク

「角度」とは・・・

 まだこのタグの説明は執筆されていません。