タグ「角度」の検索結果

43ページ目:全901問中421問~430問を表示)
岩手大学 国立 岩手大学 2013年 第1問
次の問いに答えよ.

(1)$3$次方程式$x^3-3x^2-px-1=0$が$2$重解$\displaystyle -\frac{1}{2}$をもつとき,他の解と実数$p$の値を求めよ.
(2)三角形$\mathrm{ABC}$において,$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさをそれぞれ$A,\ B,\ C$で表し,辺$\mathrm{BC}$,辺$\mathrm{CA}$,辺$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$で表すとき
\[ (a \sin A-b \sin B)\cos (A+B)=0 \]
ならば,$\triangle \mathrm{ABC}$はどのような三角形か.
(3)関数$f(x)=ax^r+b \ (x>0)$において,$f(2)=27$,$f(4)=87$,$f(8)=387$を満たすとき,$a,\ b$の値を求めよ.
岩手大学 国立 岩手大学 2013年 第1問
次の問いに答えよ.

(1)$3$次方程式$x^3-3x^2-px-1=0$が$2$重解$\displaystyle -\frac{1}{2}$をもつとき,他の解と実数$p$の値を求めよ.
(2)三角形$\mathrm{ABC}$において,$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさをそれぞれ$A,\ B,\ C$で表し,辺$\mathrm{BC}$,辺$\mathrm{CA}$,辺$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$で表すとき
\[ (a \sin A-b \sin B)\cos (A+B)=0 \]
ならば,$\triangle \mathrm{ABC}$はどのような三角形か.
(3)関数$f(x)=ax^r+b \ (x>0)$において,$f(2)=27$,$f(4)=87$,$f(8)=387$を満たすとき,$a,\ b$の値を求めよ.
高知大学 国立 高知大学 2013年 第2問
円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AB}=1$,$\mathrm{BC}=2$,$\mathrm{CD}=3$,$\mathrm{DA}=4$とする.このとき,次の問いに答えよ.

(1)$\mathrm{AC}$を求めよ.
(2)$\sin \angle \mathrm{ABC}$を求めよ.
(3)$\mathrm{A}$から直線$\mathrm{BC}$に下ろした垂線$\mathrm{AE}$の長さを求めよ.
(4)$\sin \angle \mathrm{ACB}$を求めよ.
(5)四角形$\mathrm{ABCD}$の面積を求めよ.
宇都宮大学 国立 宇都宮大学 2013年 第3問
$\triangle \mathrm{ABC}$において,内部の点を$\mathrm{P}$とし,直線$\mathrm{AP}$と辺$\mathrm{BC}$の交点を$\mathrm{D}$とする.$\overrightarrow{\mathrm{PB}}+2 \overrightarrow{\mathrm{PC}}=\overrightarrow{\mathrm{AP}}$であるとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて表せ.
(2)比$\mathrm{AP}:\mathrm{PD}$と$\mathrm{BD}:\mathrm{DC}$を求めよ.
(3)直線$\mathrm{AP}$が$\triangle \mathrm{PBC}$の外接円の中心を通るとする.その外接円の半径を$1$とし,$\angle \mathrm{BPC}=120^\circ$とするとき,辺$\mathrm{BC}$の長さを求めよ.
(4)(3)と同じ条件のもとで,$\overrightarrow{\mathrm{PB}}$と$\overrightarrow{\mathrm{PC}}$の内積を求めよ.
滋賀大学 国立 滋賀大学 2013年 第1問
円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AD}=2 \mathrm{AB}$とする.また,対角線$\mathrm{AC}$と$\mathrm{BD}$の交点$\mathrm{E}$が$\mathrm{BD}$を$3:2$に内分するとき,次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の面積を$S_1$,$\triangle \mathrm{ACD}$の面積を$S_2$とするとき,$S_1:S_2$を求めよ.
(2)$\mathrm{BC}:\mathrm{CD}$を求めよ.
(3)$\angle \mathrm{BAD}={120}^\circ$,$\mathrm{AB}=2$とするとき,四角形$\mathrm{ABCD}$の面積を求めよ.
岩手大学 国立 岩手大学 2013年 第1問
次の問いに答えよ.

(1)$x>0$のとき,$\displaystyle e^{2x}>\frac{x^2}{2}$となることを示せ.
(2)$A=\left( \begin{array}{cc}
0 & p \\
1 & 0
\end{array} \right)$($p$は実数)について,$A^4=E$かつ$A^2 \neq E$のとき,$p$の値を求めよ.ただし,$E$は単位行列とする.
(3)関数$f(x)=ax^r+b \ (x>0)$において,$f(2)=27$,$f(4)=87$,$f(8)=387$を満たすとき,$a,\ b$の値を求めよ.
(4)$\mathrm{O}$を原点とする座標平面上に$2$点$\mathrm{A}(2,\ 2 \sqrt{3})$,$\mathrm{B}(1,\ 0)$をとる.点$\mathrm{A}$を通り,直線$\mathrm{OA}$に直交する直線上に$\mathrm{OA}=\mathrm{AC}$となる点$\mathrm{C}$をとる.$\angle \mathrm{COB}=\theta$とするとき,$\tan \theta$の値を求めよ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
福島大学 国立 福島大学 2013年 第2問
直角三角形$\mathrm{ABC}$があり,$\displaystyle \angle \mathrm{A}=\frac{\pi}{2}$,$\angle \mathrm{B}=\theta$,$\mathrm{BC}=a$である.頂点$\mathrm{A}$から辺$\mathrm{BC}$に垂線$\mathrm{AP}_1$を下ろし,点$\mathrm{P}_1$から辺$\mathrm{AB}$に垂線$\mathrm{P}_1 \mathrm{Q}_1$を下ろす.同様に,点$\mathrm{Q}_1$から辺$\mathrm{BC}$に垂線$\mathrm{Q}_1 \mathrm{P}_2$を下ろし,点$\mathrm{P}_2$から辺$\mathrm{AB}$に垂線$\mathrm{P}_2 \mathrm{Q}$を下ろす.この操作を繰り返し,辺$\mathrm{BC}$上に点$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$を,辺$\mathrm{AB}$上に点$\mathrm{Q}_1$,$\mathrm{Q}_2$,$\mathrm{Q}_3$をそれぞれ定める.また,$\mathrm{AP}_1$と$\mathrm{CQ}_1$の交点を$\mathrm{R}_1$,$\mathrm{Q}_1 \mathrm{P}_2$と$\mathrm{P}_1 \mathrm{Q}_2$の交点を$\mathrm{R}_2$,$\mathrm{Q}_2 \mathrm{P}_3$と$\mathrm{P}_2 \mathrm{Q}_3$の交点を$\mathrm{R}_3$とする.以下の問いに答えよ.

(1)$\mathrm{AP}_1$,$\mathrm{P}_1 \mathrm{Q}_1$の長さを求めよ.
(2)$\overrightarrow{\mathrm{CR}}_1$を$\overrightarrow{\mathrm{CP}}_1$と$\overrightarrow{\mathrm{CA}}$を用いて表せ.
(3)$\triangle \mathrm{R}_1 \mathrm{P}_1 \mathrm{C}$の面積$S_1$を求めよ.
(4)$\triangle \mathrm{R}_3 \mathrm{P}_3 \mathrm{P}_2$の面積$S_3$を求めよ.
佐賀大学 国立 佐賀大学 2013年 第3問
$x$軸,$y$軸,$z$軸を座標軸,原点を$\mathrm{O}$とする座標空間において,$z$軸 \\
を中心軸とする半径$1$の円柱を考える.次に,$x$軸を含み$xy$平面と \\
のなす角が$\displaystyle \frac{\pi}{4}$となる平面を$\alpha$とし,平面$\alpha$による円柱の切り口の \\
曲線を$C$とする.また,点$\mathrm{A}(1,\ 0,\ 0)$とする.さらに,曲線$C$上 \\
の点$\mathrm{P}$から$xy$平面に下ろした垂線を$\mathrm{PQ}$とし,$\angle \mathrm{AOQ}=\theta$ \ \\
$(0 \leqq \theta<2\pi)$とする.このとき,次の問に答えよ.
\img{711_2927_2013_1}{48}

(1)点$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{A}$を通り$z$軸に平行な直線を$\ell$とする.$\ell$によって円柱の側面を切り開いた展開図の上に,曲線$C$の概形をかけ.
(3)図のように,平面$\alpha$と$yz$平面の交線を$Y$軸とする.$xY$平面における曲線$C$の方程式を求め,その概形をかけ.
(図は省略)
小樽商科大学 国立 小樽商科大学 2013年 第4問
正方形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$が下図のように与えられている.正方形$\mathrm{A}_2 \mathrm{B}_2 \mathrm{C}_2 \mathrm{D}_2$,正方形$\mathrm{A}_3 \mathrm{B}_3 \mathrm{C}_3 \mathrm{D}_3$,$\cdots$,正方形$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n \mathrm{D}_n$,正方形$\mathrm{A}_{n+1} \mathrm{B}_{n+1} \mathrm{C}_{n+1} \mathrm{D}_{n+1}$,$\cdots$を順に考える.ただし,$\mathrm{A}_{n+1}$,$\mathrm{B}_{n+1}$,$\mathrm{C}_{n+1}$,$\mathrm{D}_{n+1}$はそれぞれ順に$\mathrm{A}_n \mathrm{B}_n$,$\mathrm{B}_n \mathrm{C}_n$,$\mathrm{C}_n \mathrm{D}_n$,$\mathrm{D}_n \mathrm{A}_n$の中点,$\mathrm{O}$は$\mathrm{A}_1 \mathrm{C}_1$の中点である.正方形$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n \mathrm{D}_n$の面積を$S_n$とする.その時,$\displaystyle \frac{S_n}{S_1}$が初めて$\displaystyle \frac{1}{100}$以下となる$n$の値とその時の$\angle \mathrm{A}_1 \mathrm{OA}_n$を求めよ.$\log_{10}2=0.301$とする.
(図は省略)
鳥取大学 国立 鳥取大学 2013年 第1問
平面上の$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が,$\mathrm{OA}=5$,$\mathrm{OB}=3$,$\angle \mathrm{AOB}=75^\circ$,$4 \overrightarrow{\mathrm{OC}}+3 \overrightarrow{\mathrm{CA}}+5 \overrightarrow{\mathrm{CB}}=\overrightarrow{\mathrm{0}}$を満たしている.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$2$直線$\mathrm{AB}$,$\mathrm{OC}$の交点を$\mathrm{D}$とするとき,$\mathrm{AD}:\mathrm{DB}$および$\mathrm{OD}:\mathrm{DC}$を求めよ.
(3)四角形$\mathrm{OACB}$および三角形$\mathrm{OAC}$の面積を求めよ.
スポンサーリンク

「角度」とは・・・

 まだこのタグの説明は執筆されていません。