タグ「角度」の検索結果

42ページ目:全901問中411問~420問を表示)
東北大学 国立 東北大学 2013年 第2問
四面体$\mathrm{OABC}$において,$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=1$とする.$\angle \mathrm{AOB}=60^\circ$,$\angle \mathrm{BOC}=45^\circ$,$\angle \mathrm{COA}=45^\circ$とし,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおく.点$\mathrm{C}$から面$\mathrm{OAB}$に垂線を引き,その交点を$\mathrm{H}$とする.

(1)ベクトル$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.
(2)$\mathrm{CH}$の長さを求めよ.
(3)四面体$\mathrm{OABC}$の体積を求めよ.
広島大学 国立 広島大学 2013年 第4問
平面上の$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$は$|\overrightarrow{\mathrm{OA}}|=|\overrightarrow{\mathrm{OB}}|=1$かつ$\angle \mathrm{AOB}=\theta \ (0<\theta<\pi)$を満たすとする.線分$\mathrm{AB}$の中点を$\mathrm{M}$とする.$t>1$として,点$\mathrm{C}$を$\overrightarrow{\mathrm{OC}}=-t \overrightarrow{\mathrm{OM}}$となるように定める.$\triangle \mathrm{ABC}$の面積を$S$とする.次の問いに答えよ.

(1)$S$を$t$と$\theta$を用いて表せ.
(2)$|\overrightarrow{\mathrm{OC}}|=1$のとき,$S$を$t$のみを用いて表せ.
(3)$|\overrightarrow{\mathrm{OC}}|=1$のとき,$S$が最大となる$t$の値を求めよ.
埼玉大学 国立 埼玉大学 2013年 第3問
辺の長さが$\mathrm{AB}=1$,$\mathrm{BC}=k \ (0<k<1)$の長方形$\mathrm{ABCD}$を考える.辺$\mathrm{CD}$の中点を$\mathrm{M}$とし,線分$\mathrm{AM}$で三角形$\mathrm{ADM}$を折り返したとき頂点$\mathrm{D}$が重なる点を$\mathrm{E}$とする.ただし,点$\mathrm{E}$は長方形の外にはみ出る場合もある.このとき下記の設問に答えよ.

(1)$\angle \mathrm{AMD}=\alpha$とするとき,$\sin \alpha$および$\cos \alpha$をそれぞれ$k$を用いて表せ.
(2)点$\mathrm{E}$を通り,辺$\mathrm{CD}$に垂直な直線と辺$\mathrm{CD}$の交点を$\mathrm{F}$とする.このとき辺$\mathrm{CF}$の長さを$k$を用いて表せ.
(3)点$\mathrm{E}$を通り,辺$\mathrm{AM}$に垂直な直線と辺$\mathrm{AM}$の交点を$\mathrm{G}$とする.三角形$\mathrm{BCE}$の面積が三角形$\mathrm{AEG}$の面積のちょうど2倍になるときの$k$の値を求めよ.
横浜国立大学 国立 横浜国立大学 2013年 第3問
$\displaystyle 0<\theta<\frac{\pi}{3}$を満たす$\theta$に対し,$xy$平面の第1象限の点$\mathrm{P}$および$x$軸の正の部分にある点$\mathrm{Q}$を
\[ \angle \mathrm{QOP}=\theta,\quad \angle \mathrm{PQO}=2\theta,\quad \mathrm{PQ}=1 \]
を満たすようにとる.$\mathrm{PQ}$の中点を$\mathrm{R}$とする.$\theta$が$\displaystyle 0<\theta<\frac{\pi}{3}$の範囲を動くとき,$\mathrm{P}$の軌跡を$C_1$,$\mathrm{R}$の軌跡を$C_2$とする.次の問いに答えよ.

(1)$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の座標を$\theta$を用いて表せ.
(2)$C_1,\ C_2$を求め,それらを図示せよ.
(3)$C_1,\ C_2$および$x$軸で囲まれる部分を$x$軸のまわりに1回転してできる回転体の体積を求めよ.
金沢大学 国立 金沢大学 2013年 第1問
正の実数$a,\ b,\ c$に対して,$\mathrm{O}$を原点とする座標空間に3点$\mathrm{A}(a,\ 0,\ 0)$,$\mathrm{B}(0,\ b,\ 0)$,$\mathrm{C}(0,\ 0,\ c)$がある.$\mathrm{AC}=2,\ \mathrm{BC}=3$かつ$\triangle \mathrm{ABC}$の面積が$\displaystyle \frac{3 \sqrt{3}}{2}$となるとき,次の問いに答えよ.

(1)$\sin \angle \mathrm{ACB}$の値を求めよ.また,線分$\mathrm{AB}$の長さを求めよ.
(2)$a,\ b,\ c$の値を求めよ.
(3)四面体$\mathrm{OABC}$の体積を求めよ.また,原点$\mathrm{O}$から$\triangle \mathrm{ABC}$に下ろした垂線の長さを求めよ.
千葉大学 国立 千葉大学 2013年 第3問
$1$辺の長さが$3$の正四面体$\mathrm{OABC}$において,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$とする.また,辺$\mathrm{OC}$上に点$\mathrm{E}$をとり,$\mathrm{CE}=t$とする.

(1)$\mathrm{AD}$の長さを求めよ.
(2)$\cos \angle \mathrm{DAE}$を$t$を用いて表せ.
(3)$\triangle \mathrm{ADE}$の面積が最小になるときの$t$の値とそのときの面積を求めよ.
東京大学 国立 東京大学 2013年 第4問
$\triangle \mathrm{ABC}$において$\angle \mathrm{BAC}=90^\circ$,$|\overrightarrow{\mathrm{AB}}|=1$,$|\overrightarrow{\mathrm{AC}}|=\sqrt{3}$とする.$\triangle \mathrm{ABC}$の内部の点$\mathrm{P}$が
\[ \frac{\overrightarrow{\mathrm{PA}}}{|\overrightarrow{\mathrm{PA}}|}+\frac{\overrightarrow{\mathrm{PB}}}{|\overrightarrow{\mathrm{PB}}|}+\frac{\overrightarrow{\mathrm{PC}}}{|\overrightarrow{\mathrm{PC}}|}=\overrightarrow{\mathrm{0}} \]
を満たすとする.

(1)$\angle \mathrm{APB}$,$\angle \mathrm{APC}$を求めよ.
(2)$|\overrightarrow{\mathrm{PA}}|$,$|\overrightarrow{\mathrm{PB}}|$,$|\overrightarrow{\mathrm{PC}}|$を求めよ.
静岡大学 国立 静岡大学 2013年 第3問
半径$\mathrm{OA}=\mathrm{OB}=1$,中心角$\displaystyle \angle \mathrm{AOB}=2 \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$の扇形$\mathrm{OAB}$に内接し,その$2$辺が弦$\mathrm{AB}$と平行であるような長方形$\mathrm{PQRS}$について考える.頂点$\mathrm{P}$と$\mathrm{Q}$は弧$\mathrm{AB}$上に,残りの$2$頂点はそれぞれ辺$\mathrm{OA}$と$\mathrm{OB}$上にあるとして,$\angle \mathrm{POQ}=2\alpha$とする.このとき,次の問いに答えよ.

(1)長方形$\mathrm{PQRS}$の面積を,$\alpha$と$\theta$の三角比を用いて表せ.
(2)長方形$\mathrm{PQRS}$の面積が最大になるときの$\alpha$を$\theta$で表せ.
(3)$\displaystyle \theta=\frac{\pi}{3}$のとき,長方形$\mathrm{PQRS}$の面積の最大値を求めよ.
静岡大学 国立 静岡大学 2013年 第1問
半径$\mathrm{OA}=\mathrm{OB}=1$,中心角$\displaystyle \angle \mathrm{AOB}=2 \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$の扇形$\mathrm{OAB}$がある.長方形$\mathrm{PQRS}$は,扇形$\mathrm{OAB}$に内接し,その$2$辺が弦$\mathrm{AB}$と平行であるような長方形の中で面積が最大のものである.このとき,次の問いに答えよ.

(1)頂点$\mathrm{P}$と$\mathrm{Q}$が弧$\mathrm{AB}$上にあるとして,$\angle \mathrm{POQ}=2\alpha$とするとき,$\alpha$を$\theta$で表せ.
(2)長方形$\mathrm{PQRS}$の面積を$\theta$の三角比を用いて表せ.
(3)長方形$\mathrm{PQRS}$が正方形であるときの$\theta$の値を求めよ.
富山大学 国立 富山大学 2013年 第2問
$\mathrm{AB}=1$,$\displaystyle \angle \mathrm{BAC}=\theta \ \left( 0<\theta<\pi,\ \theta \neq \frac{\pi}{2} \right)$である$\triangle \mathrm{ABC}$を考える.頂点$\mathrm{B}$から辺$\mathrm{AC}$またはその延長に垂線$\mathrm{BP}$を下ろし,点$\mathrm{P}$から辺$\mathrm{AB}$に垂線$\mathrm{PQ}$を下ろす.このとき,次の問いに答えよ.

(1)$\sin \theta=t$とするとき,$\triangle \mathrm{BPQ}$の面積を$t$を用いて表せ.
(2)$\theta$を動かすとき,$\triangle \mathrm{BPQ}$の面積の最大値を求めよ.
スポンサーリンク

「角度」とは・・・

 まだこのタグの説明は執筆されていません。