タグ「角度」の検索結果

41ページ目:全901問中401問~410問を表示)
愛知県立大学 公立 愛知県立大学 2014年 第4問
座標平面上に点$\mathrm{P}(x,\ y)$,点$\mathrm{F}(1,\ 0)$,点$\mathrm{F}^\prime(-1,\ 0)$,および直線$\ell:x=2$がある.点$\mathrm{P}$から直線$\ell$に下ろした垂線を$\mathrm{PH}$とする.また,点$\mathrm{P}$と点$\mathrm{F}$,$\mathrm{F}^\prime$,$\mathrm{H}$との距離を,それぞれ$\mathrm{PF}$,$\mathrm{PF}^\prime$,$\mathrm{PH}$とし,原点$\mathrm{O}$と点$\mathrm{P}$の距離を$r$とする.比$\displaystyle \frac{\mathrm{PF}}{\mathrm{PH}}$の値が$\displaystyle \frac{1}{\sqrt{2}}$となる点$\mathrm{P}$の軌跡を$C$とするとき,以下の問いに答えよ.

(1)$C$の方程式を求めよ.
(2)$\mathrm{PF}+\mathrm{PF}^\prime$は定数となる.その値を求めよ.
(3)$\mathrm{PF} \cdot \mathrm{PF}^\prime$を$r$を用いて表せ.
(4)点$\mathrm{P}$は第$1$象限にあり,$\displaystyle \angle \mathrm{F}^\prime \mathrm{PF}=\frac{\pi}{3}$とする.このとき,$r$の値と点$\mathrm{P}$の座標を求めよ.また,$C$上の求めた点$\mathrm{P}$における接線の方程式を求めよ.
宮城大学 公立 宮城大学 2014年 第4問
次の問いに答えなさい.

(1)円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=7$,$\mathrm{AD}=5$であるとき,辺$\mathrm{CD}$の長さを求めよ.
(2)一般に任意の四角形は必ずしも円に内接しない.では,相異なる$4$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$をこの順に並べた四角形$\mathrm{PQRS}$が円に内接するための「角度に関する必要十分条件」を一つだけ簡潔に記せ.ただし,証明は不要である.
(3)平行四辺形$\mathrm{KLMN}$が円に内接すれば,この平行四辺形は長方形であることを証明せよ.
(図は省略)
秋田県立大学 公立 秋田県立大学 2014年 第4問
平面上に三つの異なる定点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$がある.線分$\mathrm{AB}$の中点を$\mathrm{M}$とする.また,同じ平面上に動点$\mathrm{P}$があり,$\displaystyle \angle \mathrm{APB}=\frac{\pi}{2}$を満たす.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OM}}=\overrightarrow{m}$とする.以下の設問に答えよ.$(1)$は解答のみでよく,$(2)$,$(3)$は解答とともに導出過程も記述せよ.

(1)$\overrightarrow{m}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(2)$|\overrightarrow{\mathrm{MP}}|$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(3)$|\overrightarrow{a}|=2$,$|\overrightarrow{b}|=\sqrt{14}$,$\overrightarrow{a} \cdot \overrightarrow{b}=-6$が成り立つ.また,$\overrightarrow{a}$と$\overrightarrow{m}$のなす角を$\alpha$,$\overrightarrow{a}$と$\overrightarrow{\mathrm{MP}}$のなす角を$\beta$とする.ただし,$0 \leqq \alpha \leqq \pi$,$0 \leqq \beta \leqq \pi$とする.以下の設問$(ⅰ)$,$(ⅱ)$,$(ⅲ)$に答えよ.

(i) $\cos \alpha$の値を求めよ.
(ii) $\triangle \mathrm{OPA}$の面積が最大となるときの$\beta$の値を求めよ.
(iii) $\triangle \mathrm{OPA}$の面積の最大値を求めよ.
会津大学 公立 会津大学 2014年 第3問
四角形$\mathrm{ABCD}$において,$\mathrm{AB}=5$,$\mathrm{BC}=3$,$\mathrm{CD}=5$,$\angle \mathrm{BCD}={120}^\circ$であり,対角線$\mathrm{BD}$は$\angle \mathrm{ABC}$を$2$等分している.このとき,以下の空欄をうめよ.

(1)$\mathrm{BD}=[イ]$である.
(2)$\angle \mathrm{ABD}=\angle \mathrm{CBD}=\theta$とするとき,$\sin \theta=[ロ]$である.
(3)四角形$\mathrm{ABCD}$の面積は$[ハ]$である.
県立広島大学 公立 県立広島大学 2014年 第2問
一辺の長さが$2$の正三角形$\mathrm{ABC}$と,その外接円$O$がある.弧$\mathrm{AB}$上の点$\mathrm{P}$は,$\angle \mathrm{BCP}=\theta$が$\displaystyle 0<\theta<\frac{\pi}{3}$を満たすように動く.次の問いに答えよ.

(1)線分$\mathrm{PB}$の長さを$\theta$を用いて表せ.
(2)$\mathrm{PA}+\mathrm{PB}+\mathrm{PC}$の最大値を求めよ.
(3)$\mathrm{PA}^2+\mathrm{PB}^2+\mathrm{PC}^2$は一定であることを示せ.
(4)$\mathrm{PA} \cdot \mathrm{PB} \cdot \mathrm{PC}$の最大値を求めよ.
北九州市立大学 公立 北九州市立大学 2014年 第4問
$\mathrm{O}$を原点とする座標空間内に$3$点$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(-2,\ 2,\ 0)$,$\mathrm{C}(2,\ -2,\ 4)$がある.以下の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AC}}$の大きさ$|\overrightarrow{\mathrm{AB}}|$,$|\overrightarrow{\mathrm{AC}}|$を求めよ.また,$\angle \mathrm{BAC}=\theta$とするとき$\cos \theta$の値を求めよ.
(2)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面を$\alpha$とし,$\mathrm{O}$から平面$\alpha$に引いた垂線と平面$\alpha$との交点を$\mathrm{H}$とする.また,$\overrightarrow{\mathrm{OH}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}+u \overrightarrow{\mathrm{OC}}$,$s+t+u=1$とする.このときの$\mathrm{H}$の座標を$s,\ t,\ u$を用いて表せ.
(3)$\mathrm{H}$の座標と線分$\mathrm{OH}$の長さを求めよ.
(4)四面体$\mathrm{OABC}$の体積を求めよ.
島根県立大学 公立 島根県立大学 2014年 第2問
$\mathrm{AD}=t$(ただし,$t>0$),$\mathrm{BD}=\mathrm{CD}=1$,$\angle \mathrm{ADB}=\angle \mathrm{BDC}=\angle \mathrm{CDA}={90}^\circ$である四面体$\mathrm{ABCD}$がある.次の問いに答えよ.

(1)辺$\mathrm{BC}$の中点を$\mathrm{M}$とするとき,$\cos \angle \mathrm{AMD}$の値を求めよ.
(2)$\triangle \mathrm{ABC}$の面積を求めよ.
(3)頂点$\mathrm{D}$から$\triangle \mathrm{ABC}$へ下ろした垂線の長さを求めよ.
島根県立大学 公立 島根県立大学 2014年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{\sin {2014}^\circ}{\log_{10}25}$の値を求めよ.ただし,$\sin {34}^\circ=0.56$,$\log_{10}2=0.30$とする.

(2)$1$から$6$までの整数が$1$つずつ書かれた$6$枚のカードから$3$枚のカードを無作為に取り出す.$1$枚目に取り出したカードに書かれた数字を$a$,$2$枚目を$b$,$3$枚目を$c$とする.このとき,$a,\ b,\ c$を係数に含む$x$に関する$2$次方程式$ax^2+2bx+c=0$が重解を持つ確率を求めよ.

(3)$\displaystyle \frac{1}{x}+\frac{1}{5y}=\frac{1}{5}$を満たす自然数の組$(x,\ y)$をすべて求めよ.

(4)下の図において,$\mathrm{AB}=a$,$\mathrm{AC}=b$,$\mathrm{AD}=c$のとき,$\cos \angle \mathrm{ABD}$を$a,\ b,\ c$を用いて表しなさい.ただし,$\mathrm{BC}$は円$\mathrm{O}$の直径とし,点$\mathrm{A}$における円の接線と直線$\mathrm{BC}$との交点を$\mathrm{D}$とする.
(図は省略)
東北大学 国立 東北大学 2013年 第2問
四面体$\mathrm{OABC}$において,$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=1$とする.$\angle \mathrm{AOB}=60^\circ$,$\angle \mathrm{BOC}=45^\circ$,$\angle \mathrm{COA}=45^\circ$とし,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおく.点$\mathrm{C}$から面$\mathrm{OAB}$に垂線を引き,その交点を$\mathrm{H}$とする.

(1)ベクトル$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.
(2)$\mathrm{CH}$の長さを求めよ.
(3)四面体$\mathrm{OABC}$の体積を求めよ.
東北大学 国立 東北大学 2013年 第6問
半径1の円を底面とする高さ$\displaystyle \frac{1}{\sqrt{2}}$の直円柱がある.底面の円の中心を$\mathrm{O}$とし,直径を1つ取り$\mathrm{AB}$とおく.$\mathrm{AB}$を含み底面と$45^\circ$の角度をなす平面でこの直円柱を2つの部分に分けるとき,体積の小さい方の部分を$V$とする.

(1)直径$\mathrm{AB}$と直交し,$\mathrm{O}$との距離が$t \ (0 \leqq t \leqq 1)$であるような平面で$V$を切ったときの断面積$S(t)$を求めよ.
(2)$V$の体積を求めよ.
スポンサーリンク

「角度」とは・・・

 まだこのタグの説明は執筆されていません。