タグ「角度」の検索結果

37ページ目:全901問中361問~370問を表示)
昭和大学 私立 昭和大学 2014年 第1問
次の問いに答えよ.

(1)連立不等式
\[ \left\{ \begin{array}{l}
-x+4<9 \\
3x-2<a \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
を満たす整数$x$が存在しないような$a$の値の範囲を求めよ.
(2)$2$次方程式$x^2+2kx+k+12=0$が実数解をもち,それがすべて正となるような定数$k$の値の範囲を求めよ.
(3)$\triangle \mathrm{ABC}$において$a^2=b^2+c^2+bc$のとき,$\angle \mathrm{A}$を求めよ.ただし,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の対辺の長さをそれぞれ$a,\ b,\ c$とする.
(4)$0^\circ \leqq x \leqq {180}^\circ$であるとき,不等式$2 \sin^2 x-5 \cos x+1 \leqq 0$を解け.
大同大学 私立 大同大学 2014年 第7問
$\triangle \mathrm{ABC}$において,$\displaystyle \cos A=\frac{2}{3}$,$\mathrm{BC}=10$とする.

(1)$\triangle \mathrm{ABC}$の外接円の半径を求めよ.
(2)$\angle \mathrm{BAC}$の$2$等分線と$\triangle \mathrm{ABC}$の外接円の交点のうち$\mathrm{A}$と異なる方を$\mathrm{D}$とする.$\mathrm{BD}$を求めよ.
(3)$\mathrm{AB}=3 \sqrt{2}$のとき,$\mathrm{AD}$を求めよ.
久留米大学 私立 久留米大学 2014年 第3問
$3$つの直線$\ell:ax-y=0$,$m:x-2y-2=0$,$n:x+y-5=0$があり,直線$\ell$と直線$m$の交点を$\mathrm{A}$,直線$\ell$と直線$n$の交点を$\mathrm{B}$,直線$m$と直線$n$の交点を$\mathrm{C}$とし,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$のすべてを通る円を$D$とする.ただし,$a$は実数で$\displaystyle a>\frac{1}{2}$とする.

(1)$\mathrm{BC}$が円$D$の直径となるとき点$\mathrm{A}$の座標は$[$7$]$である.
(2)三角形$\triangle \mathrm{ABC}$の面積が$\displaystyle \frac{15}{2}$,かつ$\angle \mathrm{A}$が鋭角であるとき,$a=[$8$]$であり,円$D$の方程式は$[$9$]$となる.
大同大学 私立 大同大学 2014年 第2問
次の$[ノ]$から$[レ]$までの$[ ]$にあてはまる$0$から$9$までの数字を記入せよ.

(1)$\mathrm{A}(-1,\ -2)$,$\mathrm{B}(3,\ 4)$とする.$\triangle \mathrm{ABC}$が$\angle \mathrm{C}={90}^\circ$の直角三角形のとき,点$\mathrm{C}$は円$x^2+y^2-[ノ]x-[ハ]y-[ヒ][フ]=0$上にある.さらに$\triangle \mathrm{ABC}$の面積が最大となる点$\mathrm{C}$の座標は$([ヘ],\ -[ホ])$または$(-[マ],\ [ミ])$である.
(2)$\sin x=t$とおくとき,$2 \sin 2x \cos x-(8+3 \cos 2x) \sin x-2=[ム] t^3-[メ] t-[モ]=(t-[ヤ])([ユ] t^2+[ヨ] t+[ラ])$である.
$2 \sin 2x \cos x-(8+3 \cos 2x) \sin x-2=0$のとき,$\displaystyle \sin x=\frac{-[リ]+\sqrt{[ル]}}{[レ]}$である.
安田女子大学 私立 安田女子大学 2014年 第1問
次の問いに答えよ.

(1)$(xz+y)^2-(x+yz)^2$を因数分解せよ.
(2)$\triangle \mathrm{ABC}$において,$\angle \mathrm{C}={60}^\circ$,$\displaystyle \sin B=\frac{1}{3}$,$\mathrm{AB}=6$のとき,$\mathrm{AC}$を求めよ.
(3)正十五角形の内角の和を求めよ.
(4)不等式$|x^2-7x|<x-4$を解け.
安田女子大学 私立 安田女子大学 2014年 第1問
次の問いに答えよ.

(1)$(xz+y)^2-(x+yz)^2$を因数分解せよ.
(2)$\triangle \mathrm{ABC}$において,$\angle \mathrm{C}={60}^\circ$,$\displaystyle \sin B=\frac{1}{3}$,$\mathrm{AB}=6$のとき,$\mathrm{AC}$を求めよ.
(3)正十五角形の内角の和を求めよ.
(4)不等式$\sin^4 \theta-\sin^2 \theta \geqq 0$を解け.ただし$0^\circ \leqq \theta<{180}^\circ$とする.
(5)$\sqrt{28-3 \sqrt{12}}$の整数部分を求めよ.
安田女子大学 私立 安田女子大学 2014年 第3問
原点$\mathrm{O}$,半径$1$の円の円周上に点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$がある.また,$\displaystyle 0<\alpha<\frac{\pi}{3}$であるような定数$\alpha$に対し,$\angle \mathrm{POQ}=\alpha$,$\angle \mathrm{QOR}=2 \alpha$,$\angle \mathrm{POR}=3 \alpha$が成り立っているものとする.このとき,次の問いに答えよ.

(1)四角形$\mathrm{PQRO}$の面積$S$を,$\alpha$を用いて表せ.
(2)線分$\mathrm{PR}$の長さ$l$を,$\alpha$を用いて表せ.
(3)$\displaystyle \alpha=\frac{\pi}{6}$であるとき,直線$\mathrm{PR}$と直線$\mathrm{OQ}$がなす角$\beta$に対し,$\sin \beta$の値を求めよ.
同志社大学 私立 同志社大学 2014年 第3問
平面上で鋭角三角形$\triangle \mathrm{ABC}$の外側に,$\mathrm{AB}$および$\mathrm{AC}$を$1$辺とする正方形$\mathrm{ABFG}$,$\mathrm{ACDE}$をつくる.ただし,$|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{AG}}|$,$|\overrightarrow{\mathrm{AC}}|=|\overrightarrow{\mathrm{AE}}|$とする.線分$\mathrm{EG}$の中点を$\mathrm{M}$,点$\mathrm{C}$から$\mathrm{AB}$に下ろした垂線の足を$\mathrm{H}$,直線$\mathrm{AM}$と$\mathrm{CH}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{b}$とおき,$|\overrightarrow{a}|=1$,$|\overrightarrow{b}|=t$,$\angle \mathrm{CAB}=\theta$とする.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$を$t,\ \theta$を用いて表せ.
(2)$\overrightarrow{\mathrm{HC}}$を$\overrightarrow{a},\ \overrightarrow{b},\ t,\ \theta$を用いて表せ.
(3)直線$\mathrm{AM}$と直線$\mathrm{BC}$が直交することを示せ.
(4)$\overrightarrow{\mathrm{AG}}$,$\overrightarrow{\mathrm{AE}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ t,\ \theta$を用いて表せ.
(5)$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{a},\ \overrightarrow{b},\ t,\ \theta$を用いて表せ.
(6)$\overrightarrow{\mathrm{BP}} \cdot \overrightarrow{\mathrm{AC}}$を求めよ.
吉備国際大学 私立 吉備国際大学 2014年 第1問
次の問いに答えよ.

(1)$(\sqrt{2}-1)^2-(\sqrt{2}-1)(\sqrt{8}+1)$を計算せよ.
(2)$\triangle \mathrm{ABC}$において$\mathrm{AB}=2$,$\mathrm{AC}=1$,$\angle \mathrm{A}={120}^\circ$のとき,$\mathrm{BC}$の長さを求めよ.
(3)連立不等式$2-3x \leqq 5,\ 2(x-1)>3x-5$を解け.
(4)$0,\ 1,\ 2,\ 3,\ 4$のうちから異なる$3$個の数字を並べて$3$桁の整数をつくる.奇数はいくつできるか.
(5)$2$次関数$y=x^2+2ax+4$は$x=1$のとき最小値をとる.その最小値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2014年 第2問
放物線$p_1:y=x^2-4x+5$と,その上の点$\mathrm{P}(4,\ 5)$を考える.

(1)傾きが$-2$で,放物線$p_1$に接する直線$\ell$の方程式は
\[ y=-2x+[$17$] \]
であり,放物線$p_1$と直線$\ell$の接点$\mathrm{Q}$の座標は$([$18$],\ [$19$])$である.
(2)$2$点$\mathrm{P}$,$\mathrm{Q}$を通り,頂点の$y$座標が$6$であるような放物線の方程式は
\[ y=-x^2+[$20$]x-[$21$] \]
または
\[ y=-\frac{1}{[$22$]}(x^2-[$23$][$24$]x-[$25$]) \]
である.
$(2)$で求めた放物線のうち,方程式$y=-x^2+[$20$]x-[$21$]$で定まるものを$p_2$とし,放物線$p_2$の頂点を$\mathrm{R}$とする.
(3)$\displaystyle \cos \angle \mathrm{PRQ}=\frac{\sqrt{[$26$][$27$]}}{[$28$][$29$]}$であり,三角形$\mathrm{PQR}$の面積は$[$30$]$である.
(4)$2$つの放物線$p_1$と$p_2$で囲まれた図形の面積は$[$31$]$である.
スポンサーリンク

「角度」とは・・・

 まだこのタグの説明は執筆されていません。