タグ「角度」の検索結果

28ページ目:全901問中271問~280問を表示)
京都大学 国立 京都大学 2014年 第3問
$\triangle \mathrm{ABC}$は,条件$\angle \mathrm{B}=2 \angle \mathrm{A}$,$\mathrm{BC}=1$を満たす三角形のうちで面積が最大のものであるとする.このとき,$\cos \angle \mathrm{B}$を求めよ.
静岡大学 国立 静岡大学 2014年 第1問
$\mathrm{AB}=\mathrm{AC}=8$である二等辺三角形$\mathrm{ABC}$がある.点$\mathrm{P}$は辺$\mathrm{BC}$上にあり,$\angle \mathrm{BAP}=\theta$,$\angle \mathrm{PAC}=2\theta$,$\displaystyle \cos \theta=\frac{7}{8}$であるとする.このとき,次の問いに答えよ.

(1)$\mathrm{BC}$の長さを求めよ.
(2)$\mathrm{BP}:\mathrm{PC}$を求めよ.
(3)$\mathrm{AP}$の長さを求めよ.
静岡大学 国立 静岡大学 2014年 第3問
三角形$\mathrm{OAB}$において,頂点$\mathrm{A}$,$\mathrm{B}$におけるそれぞれの外角の二等分線の交点を$\mathrm{C}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問いに答えよ.

(1)点$\mathrm{P}$が$\angle \mathrm{AOB}$の二等分線上にあるとき,
\[ \overrightarrow{\mathrm{OP}}=t \left( \frac{\overrightarrow{a}}{|\overrightarrow{a}|}+\frac{\overrightarrow{b}}{|\overrightarrow{b}|} \right) \]
となる実数$t$が存在することを示せ.
(2)$|\overrightarrow{a}|=7$,$|\overrightarrow{b}|=5$,$\overrightarrow{a} \cdot \overrightarrow{b}=5$のとき,$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
九州大学 国立 九州大学 2014年 第3問
鋭角三角形$\triangle \mathrm{ABC}$について,$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさを,それぞれ$A$,$B$,$C$とする.$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$,外心を$\mathrm{O}$とし,外接円の半径を$R$とする.

(1)$\mathrm{A}$と$\mathrm{O}$から辺$\mathrm{BC}$に下ろした垂線を,それぞれ$\mathrm{AD}$,$\mathrm{OE}$とする.このとき,
\[ \mathrm{AD}=2R \sin B \sin C,\quad \mathrm{OE}=R \cos A \]
を証明せよ.
(2)$\mathrm{G}$と$\mathrm{O}$が一致するならば$\triangle \mathrm{ABC}$は正三角形であることを証明せよ.
(3)$\triangle \mathrm{ABC}$が正三角形でないとし,さらに$\mathrm{OG}$が$\mathrm{BC}$と平行であるとする.このとき,
\[ \mathrm{AD}=3 \mathrm{OE},\quad \tan B \tan C=3 \]
を証明せよ.
名古屋大学 国立 名古屋大学 2014年 第1問
原点を中心とする半径$1$の円を$C$とし,$x$軸上に点$\mathrm{P}(a,\ 0)$をとる.ただし$a>1$とする.$\mathrm{P}$から$C$へ引いた$2$本の接線の接点を結ぶ直線が$x$軸と交わる点を$\mathrm{Q}$とする.

(1)$\mathrm{Q}$の$x$座標を求めよ.
(2)点$\mathrm{R}$が$C$上にあるとき,$\displaystyle \frac{\mathrm{PR}}{\mathrm{QR}}$が$\mathrm{R}$によらず一定であることを示し,その値を$a$を用いて表せ.
(3)$C$上の点$\mathrm{R}$が$\angle \mathrm{PRQ}=90^\circ$をみたすとする.このような$\mathrm{R}$の座標と線分$\mathrm{PR}$の長さを求めよ.
北海道大学 国立 北海道大学 2014年 第2問
四面体$\mathrm{OABC}$は,$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=1$,$\angle \mathrm{AOB}=\angle \mathrm{BOC}=\angle \mathrm{COA}=90^\circ$をみたす.辺$\mathrm{OA}$上の点$\mathrm{P}$と辺$\mathrm{OB}$上の点$\mathrm{Q}$を$\mathrm{OP}=p$,$\mathrm{OQ}=q$,$\displaystyle pq=\frac{1}{2}$となるようにとる.$p+q=t$とし,$\triangle \mathrm{CPQ}$の面積を$S$とする.

(1)$t$のとり得る値の範囲を求めよ.
(2)$S$を$t$で表せ.
(3)$S$の最小値,およびそのときの$p,\ q$を求めよ.
広島大学 国立 広島大学 2014年 第1問
座標平面上で,原点$\mathrm{O}$を中心とする半径$1$の円を$C$とする.$C$の外部にある点$\mathrm{P}(a,\ b)$から$C$にひいた$2$本の接線と$C$との接点を$\mathrm{H}$,$\mathrm{H}^\prime$とする.$\angle \mathrm{OPH}=\theta$とするとき,次の問いに答えよ.

(1)$\mathrm{PH}$の長さ,および$\sin \theta$を$a,\ b$を用いて表せ.
(2)$\mathrm{HH}^\prime=\mathrm{OP}$となるような点$\mathrm{P}$の軌跡を求めよ.
広島大学 国立 広島大学 2014年 第3問
四面体$\mathrm{OABC}$において,$\triangle \mathrm{OAB}$の重心を$\mathrm{F}$,$\triangle \mathrm{OAC}$の重心を$\mathrm{G}$とする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OF}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(2)$\overrightarrow{\mathrm{FG}} \para \overrightarrow{\mathrm{BC}}$であることを示せ.
(3)$\mathrm{OB}=\mathrm{OC}=1$,$\angle \mathrm{BOC}=90^\circ$のとき,$\mathrm{FG}$の長さを求めよ.
広島大学 国立 広島大学 2014年 第3問
四面体$\mathrm{OABC}$において,$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\mathrm{AB}=\mathrm{AC}=1$とする.$\triangle \mathrm{OAB}$の重心を$\mathrm{F}$,$\triangle \mathrm{OAC}$の重心を$\mathrm{G}$とし,辺$\mathrm{OA}$の中点を$\mathrm{M}$とする.また,$\angle \mathrm{BOC}=2 \theta$とする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OF}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(2)$\overrightarrow{\mathrm{FG}} \para \overrightarrow{\mathrm{BC}}$であることを示せ.
(3)$\triangle \mathrm{MBC}$の面積を$\theta$を用いて表せ.
千葉大学 国立 千葉大学 2014年 第2問
$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさをそれぞれ$A,\ B,\ C$とするとき,次の等式が成り立つとする.
\[ \frac{\sin A}{5}=\frac{\sin B}{3} \]
また,$A,\ B,\ C$のうち最も大きな角は$120^\circ$であるとする.このとき,$\cos A$,$\cos B$,$\cos C$の値をそれぞれ求めよ.
スポンサーリンク

「角度」とは・・・

 まだこのタグの説明は執筆されていません。