タグ「角度」の検索結果

13ページ目:全901問中121問~130問を表示)
広島市立大学 公立 広島市立大学 2016年 第4問
三角形$\mathrm{ABC}$において,$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおき,三角形$\mathrm{ABC}$の内部に点$\mathrm{P}$を$\displaystyle \overrightarrow{\mathrm{AP}}=\frac{1}{4} \overrightarrow{b}+\frac{1}{2} \overrightarrow{c}$を満たすようにとる.また,直線$\mathrm{AP}$と直線$\mathrm{BC}$の交点を$\mathrm{D}$,直線$\mathrm{BP}$と直線$\mathrm{AC}$の交点を$\mathrm{E}$,直線$\mathrm{CP}$と直線$\mathrm{AB}$の交点を$\mathrm{F}$とする.このとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{AD}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)線分の長さの比$\mathrm{AF}:\mathrm{FB}$,$\mathrm{AE}:\mathrm{EC}$をそれぞれ求めよ.
(3)次の問いに答えよ.

(i) 点$\mathrm{P}$が三角形$\mathrm{ABC}$の垂心であるとする.すなわち,$\overrightarrow{\mathrm{AB}} \perp \overrightarrow{\mathrm{CF}}$かつ$\overrightarrow{\mathrm{AC}} \perp \overrightarrow{\mathrm{BE}}$が成り立っている.このとき,$|\overrightarrow{b|}:|\overrightarrow{c|}$および$\cos \angle \mathrm{BAC}$の値を求めよ.
(ii) 点$\mathrm{P}$が三角形$\mathrm{ABC}$の外心になることがあるかどうかを調べよ.
京都府立大学 公立 京都府立大学 2016年 第3問
$s$を実数とする.$1<t<5$とする.$\mathrm{O}$を原点とする$xyz$空間内に$2$点$\mathrm{A}(1,\ 0,\ 0)$,$\displaystyle \mathrm{P} \left( s,\ t,\ \frac{4}{t} \right)$がある.以下の問いに答えよ.

(1)$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{P}$は一直線上にないことを示せ.
(2)$\angle \mathrm{OPA}$は鋭角であることを示せ.
(3)$\triangle \mathrm{OAP}$の面積の最小値を求めよ.
(4)$\triangle \mathrm{OAP}$の面積が最小となるとき,$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{P}$の定める平面に垂直な単位ベクトルをすべて求めよ.
兵庫県立大学 公立 兵庫県立大学 2016年 第2問
$\mathrm{AC}=\sqrt{6}$,$\mathrm{BC}=2$,$\displaystyle \angle \mathrm{ACB}=\frac{\pi}{12}$である$\triangle \mathrm{ABC}$の辺$\mathrm{BC}$上に$2$点$\mathrm{P}$,$\mathrm{Q}$があり,$\angle \mathrm{BAP}=\angle \mathrm{PAQ}=\angle \mathrm{QAC}$が成り立っている.このとき,次の問いに答えよ.

(1)$\displaystyle \cos \frac{\pi}{12}$を求めよ.
(2)辺$\mathrm{AB}$の長さを求めよ.
(3)線分$\mathrm{PC}$の長さを求めよ.
県立広島大学 公立 県立広島大学 2016年 第2問
四面体$\mathrm{OABC}$において,$\mathrm{OA}=2$,$\mathrm{OB}=2$,$\mathrm{OC}=4$,
\[ \angle \mathrm{AOB}=\frac{\pi}{2},\quad \angle \mathrm{AOC}=\frac{\pi}{3},\quad \angle \mathrm{BOC}=\frac{\pi}{3} \]
とする.また,線分$\mathrm{OA}$を$2:1$に外分する点を$\mathrm{P}$,線分$\mathrm{OB}$を$3:2$に外分する点を$\mathrm{Q}$とする.線分$\mathrm{CQ}$,線分$\mathrm{CP}$の中点をそれぞれ$\mathrm{R}$,$\mathrm{S}$とし,直線$\mathrm{PR}$と直線$\mathrm{QS}$の交点を$\mathrm{T}$とする.さらに,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OT}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)点$\mathrm{T}$から平面$\mathrm{OAB}$に下ろした垂線を$\mathrm{TH}$とする.$\overrightarrow{\mathrm{HT}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)四面体$\mathrm{OABT}$の体積を求めよ.
センター試験 問題集 センター試験 2015年 第2問
$\kagiichi$ \ 条件$p_1,\ p_2,\ q_1,\ q_2$の否定をそれぞれ$\overline{p_1},\ \overline{p_2},\ \overline{q_1},\ \overline{q_2}$と書く.

(1)次の$[ア]$に当てはまるものを,下の$\nagamarurei$~$\nagamarusan$のうちから一つ選べ.

命題「($p_1$かつ$p_2$) $\Longrightarrow$ ($q_1$かつ$q_2$)」の対偶は$[ア]$である.

$\nagamarurei$ ($\overline{p_1}$または$\overline{p_2}$) $\Longrightarrow$ ($\overline{q_1}$または$\overline{q_2}$)
$\nagamaruichi$ ($\overline{q_1}$または$\overline{q_2}$) $\Longrightarrow$ ($\overline{p_1}$または$\overline{p_2}$)
$\nagamaruni$ ($\overline{q_1}$かつ$\overline{q_2}$) $\Longrightarrow$ ($\overline{p_1}$かつ$\overline{p_2}$)
$\nagamarusan$ ($\overline{p_1}$かつ$\overline{p_2}$) $\Longrightarrow$ ($\overline{q_1}$かつ$\overline{q_2}$)
(2)自然数$n$に対する条件$p_1,\ p_2,\ q_1,\ q_2$を次のように定める.
\[\begin{array}{ll}
p_1:n \text{は素数である} & p_2:n+2 \text{は素数である} \\
q_1:n+1 \text{は} 5 \text{の倍数である} & q_2:n+1 \text{は}6 \text{の倍数である}
\end{array} \]
$30$以下の自然数$n$のなかで$[イ]$と$[ウエ]$は
命題「($p_1$かつ$p_2$) $\Longrightarrow$ ($\overline{q_1}$かつ$q_2$)」
の反例となる.
\mon[$\kagini$] $\triangle \mathrm{ABC}$において,$\mathrm{AB}=3$,$\mathrm{BC}=5$,$\angle \mathrm{ABC}={120}^\circ$とする.

このとき,$\mathrm{AC}=[オ]$,$\displaystyle \sin \angle \mathrm{ABC}=\frac{\sqrt{[カ]}}{[キ]}$であり,
$\displaystyle \sin \angle \mathrm{BCA}=\frac{[ク] \sqrt{[ケ]}}{[コサ]}$である.

直線$\mathrm{BC}$上に点$\mathrm{D}$を,$\mathrm{AD}=3 \sqrt{3}$かつ$\angle \mathrm{ADC}$が鋭角,となるようにとる.点$\mathrm{P}$を線分$\mathrm{BD}$上の点とし,$\triangle \mathrm{APC}$の外接円の半径を$R$とすると,$R$のとり得る値の範囲は$\displaystyle \frac{[シ]}{[ス]} \leqq R \leqq [セ]$である.
センター試験 問題集 センター試験 2015年 第6問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=\mathrm{AC}=5$,$\mathrm{BC}=\sqrt{5}$とする.辺$\mathrm{AC}$上に点$\mathrm{D}$を$\mathrm{AD}=3$となるようにとり,辺$\mathrm{BC}$の$\mathrm{B}$の側の延長と$\triangle \mathrm{ABD}$の外接円との交点で$\mathrm{B}$と異なるものを$\mathrm{E}$とする.

$\mathrm{CE} \cdot \mathrm{CB}=[アイ]$であるから,$\mathrm{BE}=\sqrt{[ウ]}$である.
$\triangle \mathrm{ACE}$の重心を$\mathrm{G}$とすると,$\displaystyle \mathrm{AG}=\frac{[エオ]}{[カ]}$である.
$\mathrm{AB}$と$\mathrm{DE}$の交点を$\mathrm{P}$とすると
\[ \frac{\mathrm{DP}}{\mathrm{EP}}=\frac{[キ]}{[ク]} \cdots\cdots① \]
である.
$\triangle \mathrm{ABC}$と$\triangle \mathrm{EDC}$において,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{D}$,$\mathrm{E}$は同一円周上にあるので$\angle \mathrm{CAB}=\angle \mathrm{CED}$で,$\angle \mathrm{C}$は共通であるから
\[ \mathrm{DE}=[ケ] \sqrt{[コ]} \cdots\cdots② \]
である.
$①$,$②$から,$\displaystyle \mathrm{EP}=\frac{[サ] \sqrt{[シ]}}{[ス]}$である.
京都大学 国立 京都大学 2015年 第4問
一辺の長さが$1$の正四面体$\mathrm{ABCD}$において,$\mathrm{P}$を辺$\mathrm{AB}$の中点とし,点$\mathrm{Q}$が辺$\mathrm{AC}$上を動くとする.このとき,$\cos \angle \mathrm{PDQ}$の最大値を求めよ.
大阪大学 国立 大阪大学 2015年 第3問
平面上に長さ$2$の線分$\mathrm{AB}$を直径とする円$C$がある.$2$点$\mathrm{A}$,$\mathrm{B}$を除く$C$上の点$\mathrm{P}$に対し,$\mathrm{AP}=\mathrm{AQ}$となるように線分$\mathrm{AB}$上の点$\mathrm{Q}$をとる.また,直線$\mathrm{PQ}$と円$C$の交点のうち,$\mathrm{P}$でない方を$\mathrm{R}$とする.このとき,以下の問いに答えよ.

(1)$\triangle \mathrm{AQR}$の面積を$\theta=\angle \mathrm{PAB}$を用いて表せ.
(2)点$\mathrm{P}$を動かして$\triangle \mathrm{AQR}$の面積が最大になるとき,$\overrightarrow{\mathrm{AR}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AP}}$を用いて表せ.
旭川医科大学 国立 旭川医科大学 2015年 第4問
四面体$\mathrm{OAPQ}$において,$\angle \mathrm{AOP}=\angle \mathrm{AOQ}=\angle \mathrm{POQ}={60}^\circ$,$\mathrm{OA}=1$,$\mathrm{OP}=p$,$\mathrm{OQ}=q$とし,頂点$\mathrm{A}$から平面$\mathrm{OPQ}$に下ろした垂線を$\mathrm{AH}$とする.ただし,$p \leqq q$とする.このとき,次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{AQ}}$を$p,\ q$を用いて表せ.
(2)$\mathrm{AH}$の長さを求めよ.
(3)$p+q=3$,および$\triangle \mathrm{APQ}$の面積が$1$のとき,以下の値を求めよ.
\[ (1) \ pq \qquad (2) \ p \qquad (3) \ \text{四面体} \mathrm{OAPQ} \text{の体積} \]
岡山大学 国立 岡山大学 2015年 第2問
$3$辺の長さが$\mathrm{AB}=3$,$\mathrm{BC}=5$,$\mathrm{CA}=7$の三角形$\mathrm{ABC}$がある.辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$上の点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を,$\mathrm{AP}=\mathrm{BQ}=\mathrm{CR}=x$となるようにとる.ただし,$0<x<3$である.このとき,次の問いに答えよ.

(1)$\angle \mathrm{ABC}$の値を求めよ.
(2)三角形$\mathrm{BPQ}$の面積を$x$の式で表せ.
(3)三角形$\mathrm{PQR}$の面積が最小となるときの$x$の値を求めよ.
スポンサーリンク

「角度」とは・・・

 まだこのタグの説明は執筆されていません。