タグ「規則」の検索結果

5ページ目:全54問中41問~50問を表示)
豊橋技術科学大学 国立 豊橋技術科学大学 2012年 第2問
$xy$平面上の点とベクトルに関する以下の問いに答えよ.

(1)図のように$x$軸の正の部分と$30^\circ$の角をなす直線上に$n$個の点($\mathrm{A}_1,\ \mathrm{A}_2,\ \cdots, \mathrm{A}_n$)を以下の規則で配置する.このときの$\mathrm{A}_n$の座標を$n$を用いて表せ.また$n \to \infty$の場合における$\mathrm{A}_n$の座標を求めよ.
\[ \text{(規則)} \quad |\overrightarrow{\mathrm{OA}_1}|=2,\quad \overrightarrow{\mathrm{A}_1 \mathrm{A}_2}=\frac{1}{2}\overrightarrow{\mathrm{OA}_1},\quad \overrightarrow{\mathrm{A}_{n-1} \mathrm{A}_n}=\frac{1}{2}\overrightarrow{\mathrm{A}_{n-2} \mathrm{A}_{n-1}} \]
(図は省略)
(2)今度は$n$個の点を第一象限内に図のように反時計回りに配置する.各線分は隣り合う線分と直角をなす.このとき$n \to \infty$の場合における$\mathrm{A}_n$の座標を求めよ.ただし,各線分の長さの関係は以下の規則に従うものとする.
\[ \text{(規則)} \quad |\overrightarrow{\mathrm{OA}_1}|=2,\quad |\overrightarrow{\mathrm{A}_1 \mathrm{A}_2}|=\frac{1}{2}|\overrightarrow{\mathrm{OA}_1}|,\quad |\overrightarrow{\mathrm{A}_{n-1} \mathrm{A}_n}|=\frac{1}{2}|\overrightarrow{\mathrm{A}_{n-2} \mathrm{A}_{n-1}}| \]
(図は省略)
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$xy$平面上で点$\mathrm{P}$は$x$軸上に,点$\mathrm{Q}$は$y$軸上に置かれ,点$\mathrm{P}$の$x$座標と点$\mathrm{Q}$の$y$座標はそれぞれ$-2$以上$2$以下の整数であるとする.点$\mathrm{P}$,$\mathrm{Q}$に対して次の操作を考える.
\begin{screen}
{\bf 操作} \\
点$\mathrm{P}$の座標が$(i,\ 0)$,点$\mathrm{Q}$の座標が$(0,\ j)$であるとき次の規則に従って$2$点$\mathrm{P}$,$\mathrm{Q}$を互いに独立に同時に処理する.

\mon[$(\mathrm{P}1)$] $-1 \leqq i \leqq 1$ならば点$\mathrm{P}$を$(i+1,\ 0)$または$(i-1,\ 0)$のどちらかに確率$\displaystyle \frac{1}{2}$ずつで移す.
\mon[$(\mathrm{P}2)$] $i=-2$ならば点$\mathrm{P}$を必ず$(-1,\ 0)$に移す.
\mon[$(\mathrm{P}3)$] $i=2$ならば点$\mathrm{P}$をそのままにしておく.
\mon[$(\mathrm{Q}1)$] $-1 \leqq j \leqq 1$ならば点$\mathrm{Q}$を$(0,\ j+1)$または$(0,\ j-1)$のどちらかに確率$\displaystyle \frac{1}{2}$ずつで移す.
\mon[$(\mathrm{Q}2)$] $j=-2$ならば点$\mathrm{Q}$を必ず$(0,\ -1)$に移す.
\mon[$(\mathrm{Q}3)$] $j=2$ならば点$\mathrm{Q}$をそのままにしておく.

\end{screen}
さて,$2$点$\mathrm{P}$,$\mathrm{Q}$がともに$(0,\ 0)$に置かれている状態から始め,上の操作を$3$回繰り返し行う.

(1)$3$回の操作の後,点$\mathrm{P}$が$(1,\ 0)$に置かれている確率は$[あ]$であり,$(-1,\ 0)$に置かれている確率は$[い]$である.
(2)$xy$平面上で不等式$y>x$の表す領域を$A$,不等式$y>-x$の表す領域を$B$とする.各回の操作後に点$\mathrm{P}$が常に$A \cup B$内に置かれているという事象を$U$とし,各回の操作後に点$\mathrm{Q}$が常に$A \cup B$内に置かれているという事象を$V$とすると,事象$U \cup V$の確率は$[う]$である.
$xy$平面上で$2$点$\mathrm{P}$,$\mathrm{Q}$を結ぶ線分の長さを$\mathrm{PQ}$とする.ただし$2$点$\mathrm{P}$,$\mathrm{Q}$がともに$(0,\ 0)$に置かれている場合は$\mathrm{PQ}=0$とする.
(3)$3$回の操作を通じてちょうど$1$回だけ$\mathrm{PQ}=\sqrt{2}$となる確率は$[え]$である.
(4)$3$回の操作を通じた$\mathrm{PQ}$の最大値の期待値は$[お]$である.
東京理科大学 私立 東京理科大学 2012年 第3問
数直線上に動点$\mathrm{P}$がある.$1$個のさいころを投げるという試行により$\mathrm{P}$を次の規則にしたがって,数直線上を移動させる.

$(\mathrm{A})$ 出た目の数が偶数であったら負の方向に$1$だけ移動させる.
$(\mathrm{B})$ 出た目の数が$1$であったら$0$だけ移動させる(その点にとどまる).
$(\mathrm{C})$ $(\mathrm{A})$,$(\mathrm{B})$以外であったら正の方向に$2$だけ移動させる.

最初動点$\mathrm{P}$は原点$\mathrm{O}$にあるものとする.

(1)試行を$4$回くり返したとき,規則$(\mathrm{A})$が$a$回,規則$(\mathrm{B})$が$b$回適用されたとすると,$a+b$のとりうる値の範囲は$[ア]$以上$[イ]$以下の整数全体であり,これを満たす$a,\ b$の組合わせは全部で$[ウ][エ]$通りである.
$a=1,\ b=1$となる確率は$\displaystyle \frac{[オ]}{[カ]}$であり,そのときの$\mathrm{P}$の座標の値は$[キ]$である.また,$a=1$となる確率は$\displaystyle \frac{[ク]}{[ケ]}$である.
(2)試行を$4$回くり返したとき,$\mathrm{P}$が原点$\mathrm{O}$にある確率は$\displaystyle \frac{[コ][サ][シ]}{\kakkofour{ス}{セ}{ソ}{タ}}$である.
(3)試行を$1$回だけ行ったときの$\mathrm{P}$の座標の値の期待値は$\displaystyle \frac{[チ]}{[ツ]}$であり,試行を$4$回くり返したときの$\mathrm{P}$の座標の値の期待値は$\displaystyle \frac{[テ]}{[ト]}$である.
広島大学 国立 広島大学 2011年 第5問
$\triangle$ABCの頂点は反時計回りにA,B,Cの順に並んでいるとする.点Aを出発した石が,次の規則で動くとする.\\
\quad コインを投げて表が出たとき反時計回りに隣の頂点に移り,裏が出たときは動かない.コインを投げて表と裏の出る確率はそれぞれ$\displaystyle \frac{1}{2}$とする. \\
コインを$n$回投げたとき,石が点A,B,Cにある確率をそれぞれ$a_n,\ b_n,\ c_n$とする.次の問いに答えよ.

(1)$a_1,\ b_1,\ c_1$の値を求めよ.
(2)$a_{n+1},\ b_{n+1},\ c_{n+1}$を$a_n,\ b_n,\ c_n$で表せ.また,$a_2,\ b_2,\ c_2$および$a_3,\ b_3,\ c_3$の値を求めよ.
(3)$a_n,\ b_n,\ c_n$のうち2つの値が一致することを証明せよ.
(4)(3)において一致する値を$p_n$とする.$p_n$を$n$で表せ.
名古屋工業大学 国立 名古屋工業大学 2011年 第2問
大中小3枚のコインがある.サイコロを投げて次の規則でコインの表裏を反転させる試行を繰り返す.

\mon[(i)] 1または2の目が出たら,大コインを反転
\mon[(ii)] 3または4の目が出たら,中コインを反転
\mon[(iii)] 5または6の目が出たら,小コインを反転

3枚とも表になっている状態から始めるとき,次の問いに答えよ.

(1)サイコロを5回投げたとき,3枚とも裏である確率を求めよ.
(2)サイコロを5回投げたとき,初めて3枚とも裏になる確率を求めよ.
(3)コインが3枚とも裏になったところでサイコロ投げを終了することにする.最初の状態を除きコインが3枚とも表になることが一度もなく終了する確率を求めよ.
九州工業大学 国立 九州工業大学 2011年 第4問
図のような番号のついたマス目と駒とサイコロを使って,以下に示す規則にしたがうゲームを考える.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline
\end{tabular}

\begin{itemize}
駒は最初0番のマス目に置く.
サイコロを投げ,出た目の数だけ駒を10番のマス目に向かって進める.
駒がちょうど10番のマス目に止まればゴールとする.
ただし,10番のマス目を超える場合は,その分だけ10番のマス目から0番のマス目側に戻る.
\end{itemize}
たとえば,7番のマス目に駒があり,出た目が5であった場合は,駒は8番のマス目に移動し,その次に出た目が2であった場合はゴールする.以下の問いに答えよ.

(1)2投目でゴールする確率を求めよ.
(2)2投目の後,9番のマス目に駒がある確率を求めよ.
(3)3投目でゴールする確率を求めよ.
(4)このゲームを使ってA,Bの2名が対戦する.Aから始めて,交互にサイコロを投げて各自の駒を進める試行を行ない,先にゴールした方を勝ちとする.ただし,どちらも2投以内でゴールしない場合は引き分けとする.引き分ける確率を求めよ.
(5)A,Bの駒をそれぞれ0番,$k$番$(0<k<10)$のマス目に置いて(4)と同様の対戦を開始するとき,Aが勝つ確率よりBが勝つ確率の方が高くなるための$k$の条件を求めよ.
愛媛大学 国立 愛媛大学 2011年 第3問
自然数$n$を定数として,さいころを投げる次の競技を行う.この競技は,{\bf 試行}$1$と{\bf 試行}$2$からなる.競技者は,はじめに{\bf 試行}$1$を行う.
\begin{screen}

\mon[{\bf 試行}$1$] さいころを投げ,出た目の数を$X$とする.$X$の値に応じて次の手順に従う.
\mon[$\bullet$] $X=1,\ 2,\ 3,\ 4,\ 5$の場合
$X$の値を得点として競技を終了する.
\mon[$\bullet$] $X=6$の場合
もし$n=1$ならば,$7$を得点として競技を終了する.
(★) \quad もし$n \geqq 2$ならば,{\bf 試行}$2$に進む.

\end{screen}
\begin{screen}

\mon[{\bf 試行}$2$] 競技者はさいころを投げる.
(★★) \quad 出た目の数を$X$とする.
$X$の値に応じて次の手順に従う.
\mon[$\bullet$] $X=1,\ 2,\ 3,\ 4,\ 5$の場合
次のように定めた$P$を得点として競技を終了する.
\[ P=\left\{ \begin{array}{rl}
-1 & (X=1) \\
7 & (X=2,\ 3,\ 4) \\
13 & (X=5)
\end{array} \right. \]
\mon[$\bullet$] $X=6$の場合
もし競技開始から現時点までにさいころを投げた回数が$n$に等しいならば,$7$を得点として競技を終了する.
そうでないならば,続けてさいころを投げ,(★★)にもどる.

\end{screen}
以下の問いに答えよ.

(1)$n=1$として,{\bf 試行}$1$のみを行う.得点の期待値を求めよ.
(2)$n=4$とする.得点の期待値を求めよ.
(3)$n=30$とする.{\bf 試行}$1$を行い$X=6$になった.このとき,{\bf 試行}$1$の規則(★)を変更して,競技者は

\mon[(a)] 得点$7$を得て競技をただちに終了するか
\mon[(b)] 終了せずに{\bf 試行}$2$に進むか

どちらか一方を選択できるとする.どちらの選択をする方が得点の期待値が大きいか.
愛媛大学 国立 愛媛大学 2011年 第4問
自然数$n$を定数として,さいころを投げる次の競技を行う.この競技は,{\bf 試行}$1$と{\bf 試行}$2$からなる.競技者は,はじめに{\bf 試行}$1$を行う.
\begin{screen}

\mon[{\bf 試行}$1$] さいころを投げ,出た目の数を$X$とする.$X$の値に応じて次の手順に従う.
\mon[$\bullet$] $X=1,\ 2,\ 3,\ 4,\ 5$の場合
$X$の値を得点として競技を終了する.
\mon[$\bullet$] $X=6$の場合
もし$n=1$ならば,$7$を得点として競技を終了する.
(★) \quad もし$n \geqq 2$ならば,{\bf 試行}$2$に進む.

\end{screen}
\begin{screen}

\mon[{\bf 試行}$2$] 競技者はさいころを投げる.
(★★) \quad 出た目の数を$X$とする.
$X$の値に応じて次の手順に従う.
\mon[$\bullet$] $X=1,\ 2,\ 3,\ 4,\ 5$の場合
次のように定めた$P$を得点として競技を終了する.
\[ P=\left\{ \begin{array}{rl}
-1 & (X=1) \\
7 & (X=2,\ 3,\ 4) \\
13 & (X=5)
\end{array} \right. \]
\mon[$\bullet$] $X=6$の場合
もし競技開始から現時点までにさいころを投げた回数が$n$に等しいならば,$7$を得点として競技を終了する.
そうでないならば,続けてさいころを投げ,(★★)にもどる.

\end{screen}
以下の問いに答えよ.

(1)$n=1$として,{\bf 試行}$1$のみを行う.得点の期待値を求めよ.
(2)$n=4$とする.得点の期待値を求めよ.
(3)$n=30$とする.{\bf 試行}$1$を行い$X=6$になった.このとき,{\bf 試行}$1$の規則(★)を変更して,競技者は

\mon[(a)] 得点$7$を得て競技をただちに終了するか
\mon[(b)] 終了せずに{\bf 試行}$2$に進むか

どちらか一方を選択できるとする.どちらの選択をする方が得点の期待値が大きいか.
学習院大学 私立 学習院大学 2011年 第4問
コインを投げ,点$\mathrm{P}$を次の規則によって正三角形$\mathrm{ABC}$の頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$上を動かす.点$\mathrm{P}$が$\mathrm{A}$にあるときは,表が出たら$\mathrm{B}$に動かし,裏が出たら$\mathrm{C}$に動かす.$\mathrm{B}$にあるときは,表が出たら$\mathrm{C}$に動かし,裏が出たら$\mathrm{A}$に動かす.$\mathrm{C}$にあるときは,表が出たら$\mathrm{A}$に動かし,裏が出たら$\mathrm{B}$に動かす.

はじめに点$\mathrm{P}$は$\mathrm{A}$にあるとし,コインを$n$回投げた後に$\mathrm{P}$が$\mathrm{A}$にある確率を$a_n$,$\mathrm{B}$にある確率を$b_n$,$\mathrm{C}$にある確率を$c_n$とする.

(1)$a_1=0$,$\displaystyle b_1=\frac{1}{2}$,$\displaystyle c_1=\frac{1}{2}$である.$n=2,\ 3,\ 4$に対して,$a_n,\ b_n,\ c_n$を求めよ.
(2)次の問いに答えよ.

(i) $a_{n+1}$を$a_n,\ b_n,\ c_n$を用いて表せ.
(ii) $b_{n+1}$を$a_n,\ b_n,\ c_n$を用いて表せ.
(iii) $c_{n+1}$を$a_n,\ b_n,\ c_n$を用いて表せ.

(3)$b_n=c_n$であることを示せ.
(4)$a_n$を求めよ.
愛知県立大学 公立 愛知県立大学 2011年 第1問
数直線上を次の規則で動く点Pがある.

(規則A) \quad コインを投げて,表が出たら正の方向に2進み,裏が出たら負の方向に1進む.

はじめに点Pは原点Oにあるものとし,$n$回コインを投げたときの点Pの座標を$X(n)$で表す.このとき,以下の問いに答えよ.

(1)$X(9)=0$となる確率を求めよ.
(2)点Pが座標$-3$に到達した場合,その後コインを投げても移動しないという条件を(規則A)に追加した新たな規則を(規則B)とする.このとき,$X(9)=0$となる確率を求めよ.
(3)(規則B)のもとで,$X(4)$の期待値を求めよ.
スポンサーリンク

「規則」とは・・・

 まだこのタグの説明は執筆されていません。