タグ「規則」の検索結果

4ページ目:全54問中31問~40問を表示)
徳島大学 国立 徳島大学 2013年 第2問
$5$種類の文字$\mathrm{N},\ \mathrm{E},\ \mathrm{S},\ \mathrm{W},\ \mathrm{X}$を重複を許して横一列に$6$個並べた順列を考える.原点から出発して座標平面上を動くことができる点$\mathrm{P}$がある.それぞれの順列に対し,順列の文字を左端から$1$つずつ見てゆき,次の規則に従って点$\mathrm{P}$を動かし点$\mathrm{P}$の最終的な位置を決める.$\mathrm{X}$以外の各文字に対して,点$\mathrm{P}$を次の方向に$1$だけ動かす.

$\mathrm{N}$は$y$軸の正の方向 \quad $\mathrm{E}$は$x$軸の正の方向 \quad $\mathrm{S}$は$y$軸の負の方向 \quad $\mathrm{W}$は$x$軸の負の方向

$\mathrm{X}$に対しては点$\mathrm{P}$は動かさない.例えば,順列$\mathrm{NESNXN}$に対する点$\mathrm{P}$の最終的な位置は$(1,\ 2)$となる.

(1)$x+y=6$を満たす$(x,\ y)$が点$\mathrm{P}$の最終的な位置となる順列の総数を求めよ.
(2)$|x+y|=4$を満たす$(x,\ y)$が点$\mathrm{P}$の最終的な位置となる順列の総数を求めよ.
(3)点$\mathrm{P}$の最終的な位置が原点である順列の総数を求めよ.
宮崎大学 国立 宮崎大学 2013年 第2問
$0<r<1$を満たす実数$r$について,座標平面上に,$2$点$\mathrm{P}_1(1,\ 0)$と$\mathrm{P}_2(1,\ r)$がある.これらから点$\mathrm{P}_{n+1}(x_{n+1},\ y_{n+1}) \ (n=2,\ 3,\ 4,\ \cdots)$を次の規則に従って定める.

点$\mathrm{P}_{n-1}$から点$\mathrm{P}_n$に向かう方向を時計の針の回転と逆の向きに${90}^\circ$回転し,その方向に点$\mathrm{P}_n$から距離$r^n$だけ進んだ点を$\mathrm{P}_{n+1}$とする.

このとき,次の各問に答えよ.

(1)点$\mathrm{P}_4,\ \mathrm{P}_8$の座標を,$r$を用いて表せ.
(2)$\displaystyle x=\lim_{m \to \infty}x_{4m}$,$\displaystyle y=\lim_{m \to \infty}y_{4m}$とするとき,点$\mathrm{P}(x,\ y)$の座標を,$r$を用いて表せ.
(3)実数$r$が$0<r<1$の範囲を動くとき,$(2)$の点$\mathrm{P}$の軌跡を座標平面上に図示せよ.
宮崎大学 国立 宮崎大学 2013年 第4問
$0<r<1$を満たす実数$r$について,座標平面上に,$2$点$\mathrm{P}_1(1,\ 0)$と$\mathrm{P}_2(1,\ r)$がある.これらから点$\mathrm{P}_{n+1}(x_{n+1},\ y_{n+1}) \ (n=2,\ 3,\ 4,\ \cdots)$を次の規則に従って定める.

点$\mathrm{P}_{n-1}$から点$\mathrm{P}_n$に向かう方向を時計の針の回転と逆の向きに${90}^\circ$回転し,その方向に点$\mathrm{P}_n$から距離$r^n$だけ進んだ点を$\mathrm{P}_{n+1}$とする.

このとき,次の各問に答えよ.

(1)点$\mathrm{P}_4,\ \mathrm{P}_8$の座標を,$r$を用いて表せ.
(2)$\displaystyle x=\lim_{m \to \infty}x_{4m}$,$\displaystyle y=\lim_{m \to \infty}y_{4m}$とするとき,点$\mathrm{P}(x,\ y)$の座標を,$r$を用いて表せ.
(3)実数$r$が$0<r<1$の範囲を動くとき,$(2)$の点$\mathrm{P}$の軌跡を座標平面上に図示せよ.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2013年 第1問
次の$[ ]$にあてはまる適切な数値を記入せよ.

(1)数直線上を動く点$\mathrm{P}$が原点の位置にある.$2$個のさいころを同時に投げる試行を$\mathrm{T}$とし,試行$\mathrm{T}$の結果によって,$\mathrm{P}$は次の規則で動く.
(規則)$2$個のさいころの出た目の積が偶数ならば$+2$だけ移動し,奇数ならば$+1$だけ移動する.
試行$\mathrm{T}$を$n$回繰り返し行ったときの$\mathrm{P}$の座標を$x_n$とすると,$x_1=2$となる確率は$[ア]$であり,$x_3=3$かつ$x_4=5$となる確率は$[イ]$である.また,$\mathrm{P}$が座標$4$以上の点に初めて到達するまで試行$\mathrm{T}$を繰り返し行うとき,試行回数の期待値は$[ウ]$である.
(2)平面上に$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$があり,$|\overrightarrow{\mathrm{OA}}|=|\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}|=|2 \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}|=1$をみたしている.このとき,$|\overrightarrow{\mathrm{OB}}|=[エ]$である.また,実数$s,\ t$が条件$1 \leqq s+3t \leqq 3$,$s \geqq 0$,$t \geqq 0$をみたしながら動くとき,$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$で定められた点$\mathrm{P}$の存在する範囲の面積は$[オ]$である.
早稲田大学 私立 早稲田大学 2013年 第1問
一般項が$a_k=2k-1$である数列に,次のような規則で縦棒で仕切りを入れて区分けする.その規則とは,区分けされた$n$番目の部分(これを第$n$群と呼ぶことにする)が$2n-1$個の項からなるように仕切るものである.
\[ 1 \;\biggl|\; 3,\ 5,\ 7 \;\biggl|\; 9,\ 11,\ 13,\ 15,\ 17 \;\biggl|\; 19,\ 21,\ 23,\ 25,\ 27,\ 29,\ 31 \;\biggl|\; 33,\ 35,\ 37,\ \cdots \]
このとき,例えば,第$3$群は,$9,\ 11,\ 13,\ 15,\ 17$の$5$つの項からなるので,第$3$群の初項は$9$,末項は$17$,中央の項は$3$項目の$13$である.また,第$3$群の総和は$9+11+13+15+17=65$であり,$15$は第$3$群の第$4$項である.次の問に答えよ.

(1)第$n$群の初項を$n$の式で表せ.
(2)第$n$群の中央の項を$n$の式で表せ.
(3)第$n$群の項の総和$S(n)$を$n$の式で表せ.
(4)第$1$群から第$n$群までの中央の項の総和を$n$の式で表せ.
(5)$2013$は第何群の第何項か.
富山県立大学 公立 富山県立大学 2013年 第4問
$a,\ b,\ c,\ d$は実数とする.$1$次変換とは,座標平面上の任意の点$(x,\ y)$を同じ平面上の点$(X,\ Y)$に移す変換で,その変換の規則が$\left( \begin{array}{c}
X \\
Y
\end{array} \right)=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right)$と表せるものである.このとき,行列$\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$を$1$次変換を表す行列という.次の変換が,$1$次変換であるならばその$1$次変換を表す行列を求め,$1$次変換でないならばその理由を述べよ.

(1)座標平面上の任意の点をそれ自身に移す変換
(2)座標平面上の任意の点を直線$y=-x$に関して対称な点に移す変換
(3)座標平面上の任意の点を$x$軸方向に$2$,$y$軸方向に$4$だけ移動する変換
岡山大学 国立 岡山大学 2012年 第2問
表の出る確率が$p$,裏の出る確率が$q$である硬貨を用意する.ここで$p,\ q$は正の定数で,$p+q=1$を満たすとする.座標平面における領域$D$を
\[ D= \{ (x,\ y) \ | \ 0 \leqq x \leqq 2,\ 0 \leqq y \leqq 2\} \]
とし,$D$上を動く点$\mathrm{Q}$を考える.$\mathrm{Q}$は点$(0,\ 0)$から出発し,硬貨を投げて表が出れば$x$軸方向に$+1$だけ進み,裏が出れば$y$軸方向に$+1$だけ進む.なお,この規則で$D$上を進めないときには,その回はその点にとどまるものとする.このとき以下の問いに答えよ.

(1)硬貨を$4$回投げて$\mathrm{Q}$が点$(2,\ 2)$に到達する確率$P_4$を求めよ.
(2)硬貨を$5$回投げて$5$回目に初めて$\mathrm{Q}$が点$(2,\ 2)$に到達する確率$P_5$を求めよ.
(3)$\displaystyle P_5 = \frac{1}{9}$のとき,$p$の値を求めよ.
埼玉大学 国立 埼玉大学 2012年 第3問
正三角形の頂点を反時計回りにそれぞれ$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とし,頂点$\mathrm{A}$上に碁石が置かれているとする.さいころを何回か投げ,以下の規則[R]に従って碁石を移動させるゲームを考える.\\
$[\text{R}]$ \quad さいころの目が$3$の倍数のときは反時計回りに隣の頂点に移動し,$3$の倍数でないときは移動しないでその頂点に留まる.\\
このとき下記の設問に答えなさい.

(1)さいころを$3$回投げたとき,碁石が頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$上にある確率をそれぞれ求めなさい.
(2)さいころを$n$回投げたとき,碁石が頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$上にある確率をそれぞれ$p,\ q,\ r$とする.さらに続けて$4$回投げたとき,碁石が頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$上にある確率をそれぞれ求めなさい.
(3)さいころを$100$回投げたとき,碁石が置かれている確率の最も高い頂点は$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$のうちのどれか求めなさい.
広島大学 国立 広島大学 2012年 第4問
$N$は$4$以上の整数とする.次の規則にしたがって$1$個のさいころを繰り返し投げる.

規則:出た目を毎回記録し,偶数の目が$3$回出るか,あるいは奇数の目が$N$回出たところで,さいころを投げる操作を終了する.

ただし,さいころの目の出方は同様に確からしいとする.次の問いに答えよ.

(1)さいころを投げる回数は,最大で何回か.
(2)さいころを$3$回投げて操作を終了する確率を求めよ.
(3)さいころを$N$回投げて操作を終了する確率を求めよ.
(4)最後に奇数の目が出て操作を終了する確率を求めよ.
(5)$N=4$のとき,さいころを投げる回数の期待値を求めよ.
広島大学 国立 広島大学 2012年 第5問
$n$は自然数とし,点Pは次の規則にしたがって座標平面上を動くとする.\\
規則:\\
\quad (A) \ Pは,はじめに点$(1,\ 2)$にある.\\
\quad (B) \ さいころを投げて2以下の目が出ればPは原点を中心に反時計回りに$120^\circ$回転し,3以上の目が出れば時計回りに$60^\circ$回転する.\\
\quad (C) \ (B)を$n$回繰り返す.\\
ただし,さいころの目の出方は同様に確からしいとする.次の問いに答えよ.

(1)$n=3$のとき,出た目が$4,\ 1,\ 2$であったとする.このときPが最後に移った点の座標を求めよ.
(2)$n=3$のとき,Pが点$(1,\ 2)$にある確率を求めよ.
(3)$n=6$のとき,Pが点$(-1,\ -2)$にある確率を求めよ.
(4)$n=3m$のとき,Pが点$(1,\ 2)$にある確率を求めよ.ただし,$m$は自然数とする.
スポンサーリンク

「規則」とは・・・

 まだこのタグの説明は執筆されていません。