タグ「規則」の検索結果

2ページ目:全54問中11問~20問を表示)
東京大学 国立 東京大学 2015年 第4問
投げたとき表と裏の出る確率がそれぞれ$\displaystyle \frac{1}{2}$のコインを$1$枚用意し,次のように左から順に文字を書く.

コインを投げ,表が出たときは文字列$\mathrm{AA}$を書き,裏が出たときは文字$\mathrm{B}$を書く.さらに繰り返しコインを投げ,同じ規則に従って,$\mathrm{AA}$,$\mathrm{B}$をすでにある文字列の右側につなげて書いていく.
たとえば,コインを$5$回投げ,その結果が順に表,裏,裏,表,裏であったとすると,得られる文字列は,
\[ \mathrm{A} \ \mathrm{A} \ \mathrm{B} \ \mathrm{B} \ \mathrm{A} \ \mathrm{A} \ \mathrm{B} \]
となる.このとき,左から$4$番目の文字は$\mathrm{B}$,$5$番目の文字は$\mathrm{A}$である.

(1)$n$を正の整数とする.$n$回コインを投げ,文字列を作るとき,文字列の左から$n$番目の文字が$\mathrm{A}$となる確率を求めよ.
(2)$n$を$2$以上の整数とする.$n$回コインを投げ,文字列を作るとき,文字列の左から$n-1$番目の文字が$\mathrm{A}$で,かつ$n$番目の文字が$\mathrm{B}$となる確率を求めよ.
千葉大学 国立 千葉大学 2015年 第2問
コインを$n$回続けて投げ,$1$回投げるごとに次の規則に従って得点を得るゲームをする.
\begin{itemize}
コイン投げの第$1$回目には,$1$点を得点とする.
コイン投げの第$2$回目以降において,ひとつ前の回と異なる面が出たら,$1$点を得点とする.
コイン投げの第$2$回目以降において,ひとつ前の回と同じ面が出たら,$2$点を得点とする.
\end{itemize}
例えばコインを$3$回投げて(裏,表,裏)の順に出たときの得点は,$1+1+1=3$より$3$点となる.また(裏,裏,表)のときの得点は,$1+2+1=4$より$4$点となる.

コインの表と裏が出る確率はそれぞれ$\displaystyle \frac{1}{2}$とし,このゲームで得られる得点が$m$となる確率を$P_{n,m}$とおく.このとき,以下の問いに答えよ.

(1)$n \geqq 2$が与えられたとき,$P_{n,2n-1}$と$P_{n,2n-2}$を求めよ.
(2)$n \leqq m \leqq 2n-1$について,$P_{n,m}$を$n$と$m$の式で表せ.
千葉大学 国立 千葉大学 2015年 第2問
コインを$n$回続けて投げ,$1$回投げるごとに次の規則に従って得点を得るゲームをする.
\begin{itemize}
コイン投げの第$1$回目には,$1$点を得点とする.
コイン投げの第$2$回目以降において,ひとつ前の回と異なる面が出たら,$1$点を得点とする.
コイン投げの第$2$回目以降において,ひとつ前の回と同じ面が出たら,$2$点を得点とする.
\end{itemize}
例えばコインを$3$回投げて(裏,表,裏)の順に出たときの得点は,$1+1+1=3$より$3$点となる.また(裏,裏,表)のときの得点は,$1+2+1=4$より$4$点となる.

コインの表と裏が出る確率はそれぞれ$\displaystyle \frac{1}{2}$とし,このゲームで得られる得点が$m$となる確率を$P_{n,m}$とおく.このとき,以下の問いに答えよ.

(1)$n \geqq 2$が与えられたとき,$P_{n,2n-1}$と$P_{n,2n-2}$を求めよ.
(2)$n \leqq m \leqq 2n-1$について,$P_{n,m}$を$n$と$m$の式で表せ.
千葉大学 国立 千葉大学 2015年 第3問
コインを$n$回続けて投げ,$1$回投げるごとに次の規則に従って得点を得るゲームをする.
\begin{itemize}
コイン投げの第$1$回目には,$1$点を得点とする.
コイン投げの第$2$回目以降において,ひとつ前の回と異なる面が出たら,$1$点を得点とする.
コイン投げの第$2$回目以降において,ひとつ前の回と同じ面が出たら,$2$点を得点とする.
\end{itemize}
例えばコインを$3$回投げて(裏,表,裏)の順に出たときの得点は,$1+1+1=3$より$3$点となる.また(裏,裏,表)のときの得点は,$1+2+1=4$より$4$点となる.

コインの表と裏が出る確率はそれぞれ$\displaystyle \frac{1}{2}$とし,このゲームで得られる得点が$m$となる確率を$P_{n,m}$とおく.このとき,以下の問いに答えよ.

(1)$n \geqq 2$が与えられたとき,$P_{n,2n-1}$と$P_{n,2n-2}$を求めよ.
(2)$n \leqq m \leqq 2n-1$について,$P_{n,m}$を$n$と$m$の式で表せ.
富山大学 国立 富山大学 2015年 第3問
「表が出る確率が$p (0<p<1)$,裏が出る確率が$1-p$のコインを投げ,数直線上の点$\mathrm{A}$を次の規則(ア),(イ)にしたがって動かす」という操作を繰り返し行う.ただし,点$\mathrm{A}$は最初は原点にあるものとする.

\mon[(ア)] 点$\mathrm{A}$が$-1,\ 0,\ 1,\ 2$のいずれかにあるときには,コインを投げて表が出れば点$\mathrm{A}$を$+2$だけ移動させ,裏が出れば点$\mathrm{A}$を$-1$だけ移動させる.
\mon[(イ)] 点$\mathrm{A}$が$-1,\ 0,\ 1,\ 2$以外にあるときには,コインを投げて表が出ても裏が出ても点$\mathrm{A}$を移動させない.

このような操作を$n$回行った後の点$\mathrm{A}$の座標を$x_n$とするとき,次の問いに答えよ.

(1)上の操作を$3$回繰り返した後,$x_1 \neq 0$かつ$x_2 \neq 0$かつ$x_3 \neq 0$となる確率を求めよ.
(2)$k$を自然数とする.$x_{3k}=0$となる確率,$x_{3k+1}=0$となる確率,$x_{3k+2}=0$となる確率をそれぞれ求めよ.
(3)$k$を自然数とする.$x_{3k-2} \neq x_{3k-1}$かつ$x_{3k-1}=x_{3k}$となる確率を求めよ.
中央大学 私立 中央大学 2015年 第4問
表が出る確率が$\displaystyle q \ \left( q<\frac{1}{2} \right)$,裏が出る確率が$1-q$であるコインを使い,$xy$平面上の動点$P$を次の規則で動かす.
\begin{itemize}
動点$P$は原点から出発する.
コインを投げて表が出ると,$x$軸の正の方向に$1$移動する.
コインを投げて裏が出ると,$y$軸の正の方向に$1$移動する.
\end{itemize}
このコインを$4$回投げたとき,動点$P$が点$\mathrm{A}(2,\ 2)$に到着する確率は$\displaystyle \frac{8}{27}$である.このとき,以下の設問に答えよ.なお,解答の数値は分数および累乗のままでよい.

(1)このコインを$1$回投げたとき,表が出る確率$q$を求めよ.
(2)このコインを$8$回投げたとき,
動点$P$が,途中で点$\mathrm{A}(2,\ 2)$を通らずに,点$\mathrm{B}(4,\ 4)$に到着する確率
を求めよ.
東北医科薬科大学 私立 東北医科薬科大学 2015年 第3問
$xy$平面上の点$\mathrm{P}$が原点$\mathrm{O}(0,\ 0)$から次の規則に従って動くとする.表,裏がでる確率が等しい硬貨を$2$枚投げて,表が$2$枚でたら右に$1$移動し,裏が$2$枚でたら上に$1$移動し,表$1$枚裏$1$枚でたら右に$1$移動し,さらに上に$1$移動する.以下,この試行を繰り返す.従って,最初表$1$枚裏$1$枚でたら点$\mathrm{P}$の座標は$(1,\ 1)$で,次に表$2$枚でたら点$\mathrm{P}$の座標は$(2,\ 1)$である.このとき,次の問に答えなさい.

(1)この試行を$3$回繰り返したとき,点$\mathrm{P}$の座標が$(3,\ 3)$である確率は$\displaystyle \frac{[ア]}{[イ]}$である.
(2)この試行を$4$回繰り返したとき,点$\mathrm{P}$の座標が$(3,\ 3)$である確率は$\displaystyle \frac{[ウ]}{[エオ]}$である.
(3)この試行を$5$回繰り返したとき,点$\mathrm{P}$の座標が$(3,\ 3)$である確率は$\displaystyle \frac{[カキ]}{[クケコ]}$である.また,そのうち点$\mathrm{P}$が点$(1,\ 1)$を通って座標が$(3,\ 3)$である確率は$\displaystyle \frac{[サ]}{[シスセ]}$である.
(4)この試行を$7$回繰り返したとき,点$\mathrm{P}$が$(3,\ 3)$を通るか,$(3,\ 3)$である確率は$\displaystyle \frac{[ソタチ]}{\fboxsep=0pt\fbox{\rule[-0.25em]{0pt}{1.1em}\makebox[15mm][c]{\small{ツテトナ}}}}$である.
北里大学 私立 北里大学 2015年 第1問
次の$[ ]$にあてはまる答を記せ.

(1)$k$を定数とするとき,方程式$\sqrt{4x-3}=x+k$の実数解の個数が$2$個となる$k$の値の範囲は$[ア]$,実数解の個数が$1$個となる$k$の値の範囲は$[イ]$である.また,曲線$y=\sqrt{4x-3}$と直線$y=x$で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積は$[ウ]$である.
(2)曲線$y=kx^3-1$と曲線$y=\log x$が共有点をもち,その点において共通の接線をもつとするとき,定数$k$の値は$[エ]$,共通の接線の方程式は$y=[オ]$である.
(3)数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とするとき,$\{a_n\}$は
\[ a_1=1,\quad a_{n+1}=S_n+n^2+1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たす.このとき,$a_4=[カ]$であり,$\{a_n\}$の一般項は$a_n=[キ]$である.また,$S_n=[ク]$である.
(4)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=3$,$\mathrm{AC}=4$,$\displaystyle \angle \mathrm{A}=\frac{\pi}{3}$である.$\triangle \mathrm{ABC}$の外心を$\mathrm{O}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおく.

(i) $\triangle \mathrm{ABC}$の外接円の半径は$[ケ]$である.
(ii) $\overrightarrow{\mathrm{AO}}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表すと$\overrightarrow{\mathrm{AO}}=[コ] \overrightarrow{b}+[サ] \overrightarrow{c}$である.
(iii) 直線$\mathrm{BO}$と辺$\mathrm{AC}$の交点を$\mathrm{P}$とするとき,$\mathrm{AP}:\mathrm{PC}$は$[シ]$である.

(5)$\mathrm{X}$君と$\mathrm{Y}$さんは,毎日正午に次の規則にしたがって食事をとる.

(i) 食堂$\mathrm{A}$,食堂$\mathrm{B}$,食堂$\mathrm{C}$のいずれかで食事をとる.
(ii) 食堂は前日とは異なる$2$つの食堂のうちの$1$つを無作為に選ぶ.
(iii) $2$人が同じ食堂を選んだ日は,必ず一緒に食事をとる.

$1$日目,$2$人は別々の食堂で食事をとったとする.このとき,$3$日目に初めて$2$人が一緒に食事をとる確率は$[ス]$である.また,$2$人が一緒に食事をとる$2$回目の日が$7$日目となる確率は$[セ]$である.
中央大学 私立 中央大学 2015年 第2問
ある鉄道会社では平成$26$年$3$月まで,最低運賃$130$円から$1000$円まで$10$円きざみで運賃が設定されていた.この年$4$月からの消費税率の引き上げに伴い,次のように運賃を改定することにした.

\mon[$①$] $\mathrm{IC}$カードを利用する場合
改定前の運賃に$108/105$を乗じ,$1$円未満の端数を切り捨て,$1$円単位にした額を新運賃とする.
\mon[$②$] 券売機等で発売する切符を利用する場合
改定前の運賃に$108/105$を乗じ,$10$円未満の端数を切り上げ,$10$円単位とした額を新運賃とする.

以下の問いに答えよ.

(1)切符を利用する場合,$20$円の値上げとなるような改定前運賃の範囲を求めよ.
(2)運賃改定後,$\mathrm{IC}$カードを利用した場合と,切符を利用した場合で運賃の差が最大となるような改定前運賃をすべて求めよ.
(3)切符を利用する場合の規則を,$10$円未満の端数を切り上げるのではなく,四捨五入する計算方法に変えたとする.このとき,値上げにならない運賃の範囲を求めよ.
大阪歯科大学 私立 大阪歯科大学 2015年 第4問
\begin{mawarikomi}{50mm}{
(図は省略)
}
右図のような盤上の$\mathrm{A}$にコマを置き,線に沿って一区間ずつコマを進めるゲームをする.コマを進める方向は,サイコロを投げ,偶数の目が出たら左,奇数の目が出たら上に進める.ただし,左斜め上に進む線があるときは,サイコロの目が$5$か$6$のときに限り,この線に沿って移動し,$4$以下のときは,他の点における規則と同様とする.進めないときはそのまま留まり,逆戻りはできない.

(1)$4$回サイコロを投げたとき,$\mathrm{B}$に到達する確率はいくらか.
(2)$5$回目でちょうど$\mathrm{C}$に到達する確率はいくらか.
(3)$6$回目でちょうど$\mathrm{C}$に到達する確率はいくらか.

\end{mawarikomi}
スポンサーリンク

「規則」とは・・・

 まだこのタグの説明は執筆されていません。