タグ「複素数」の検索結果

9ページ目:全105問中81問~90問を表示)
北里大学 私立 北里大学 2014年 第1問
次の文中の$[ア]$~$[ヒ]$にあてはまる最も適切な数を答えなさい.

(1)複素数$z=-1+i$を考える.ここで,$i$は虚数単位である.このとき,
\[ z+z^2+z^3+z^4=[ア]+[イ]i \]
である.また,
\[ \sum_{n=1}^{12} z^n=[ウ][エ]+[オ][カ] i \]
となる.
(2)$0 \leqq \theta \leqq \pi$の範囲における関数$\displaystyle f(\theta)=\frac{1}{3} \sin \theta+\frac{1}{2} \cos^2 \theta-\frac{2}{3}$の最小値は$\displaystyle \frac{[キ]}{[ク]}$,最大値は$\displaystyle \frac{[ケ]}{[コ]}$である.

(3)循環小数$0. \dot{2}01 \dot{4}$を分数で表すと,
\[ 0. \dot{2}01 \dot{4}=\frac{\kakkofour{サ}{シ}{ス}{セ}}{\kakkofour{ソ}{タ}{チ}{ツ}} \]
となる.
(4)平面上に異なる$2$点$\mathrm{A}$,$\mathrm{B}$をとる.線分$\mathrm{AB}$の中点を$\mathrm{M}$とすると,$|\overrightarrow{\mathrm{AP}}|=2 |\overrightarrow{\mathrm{BP}}|$を満たす点$\mathrm{P}$の軌跡は,
\[ \overrightarrow{\mathrm{MO}}=\frac{[テ]}{[ト]} \overrightarrow{\mathrm{MA}} \]
を満たす点$\mathrm{O}$を中心とする半径
\[ \frac{[ナ]}{[ニ]} |\overrightarrow{\mathrm{MA}}| \]
の円である.
(5)同じ大きさの赤玉と白玉が何個か袋に入っている.よくかきまぜた後,この袋の中から同時に$2$個の玉を取り出したとき,$2$個とも赤の確率を$p$,$2$個のうち$1$個が赤,$1$個が白の確率を$q$,$2$個とも白の確率を$r$と書くとすると,それらの比例関係は次のようになった.
\[ p:q:r=14:20:5 \]
この袋の中の赤玉の個数は$[ヌ]$,白玉の個数は$[ネ]$である.
(6)$a,\ b,\ c$は次の方程式を満たす整数とする.
\[ a \log_{10} \frac{5}{6}+b \log_{10} 15+c \log_{10} \frac{10}{9}=\log_{10} 5000 \]
このとき,$a=[ノ]$,$b=[ハ]$,$c=[ヒ]$である.
南山大学 私立 南山大学 2014年 第1問
$[ ]$の中に答を入れよ.

(1)$a$を実数とするとき,不等式$x^2-2ax+2a^2+a-1>0$がすべての実数$x$に対して成り立つような$a$の値の範囲を求めると$[ア]$である.
(2)$n$を整数とするとき,$\displaystyle \frac{3n-2}{5}$より大きな整数のうち最小のものが$6$となるような$n$の値をすべて求めると$n=[イ]$である.
(3)複素数$\displaystyle z=\frac{2-i}{1+i}$について,$z^2-z$を計算すると$z^2-z=[ウ]$である.さらに,$z^4-2z^3+3z^2-3z$を計算すると$z^4-2z^3+3z^2-3z=[エ]$である.
(4)$a>0$とし,$x>0$において$\displaystyle y=\left( \log_{10}ax^2 \right) \left( \log_{10} \frac{a}{x} \right)$を考える.$t=\log_{10} x$,$b=\log_{10}a$として$y$を$t$と$b$で表すと$y=[オ]$である.また,$x$の方程式$\displaystyle \left( \log_{10}ax^2 \right) \left( \log_{10} \frac{a}{x} \right)=1$が異なる$2$つの解$\alpha,\ \beta$をもつとき,$\alpha\beta$を$a$で表すと$\alpha\beta=[カ]$である.
(5)座標平面上の$3$点$\mathrm{A}(4,\ 6)$,$\mathrm{B}(1,\ 3)$,$\mathrm{C}(4,\ 2)$を考える.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る円の半径$r$を求めると$r=[キ]$である.また,点$\mathrm{A}$を通る直線が,この円と$\mathrm{A}$とは異なる点$\mathrm{P}$で交わり,$\mathrm{AP}=\sqrt{2}r$となるとき,この直線の傾き$k$を求めると$k=[ク]$である.
千歳科学技術大学 私立 千歳科学技術大学 2014年 第1問
以下の各問いに答えなさい.

(1)次の$[ ]$に適語を入れなさい.
整数$a$と$0$でない整数$b$によって,分数$\displaystyle \frac{a}{b}$の形に表すことのできる数を$[ア]$といい,表すことができない数を$[イ]$という.
(2)$x$と$y$についての$1$次不等式$ax-2y>4$と$x+by<a$の解が一致しているとき,定数$a$と$b$の値をそれぞれ求めなさい.
(3)$x+y=1$のとき$x^2+y^2$の最小値を求めなさい.
(4)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=4$,$\mathrm{AC}=7$,$\angle \mathrm{A}={120}^\circ$,$\angle \mathrm{A}$の$2$等分線と$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,$\mathrm{AD}$の長さを求めなさい.
(5)円$x^2+y^2=2$と直線$y=x-1$の$2$つの交点を結ぶ線分の長さを求めなさい.
(6)$x^4-4$を複素数の範囲で因数分解しなさい.
千歳科学技術大学 私立 千歳科学技術大学 2014年 第1問
以下の各問いに答えなさい.

(1)次の$[ ]$に適語を入れなさい.
整数$a$と$0$でない整数$b$によって,分数$\displaystyle \frac{a}{b}$の形に表すことのできる数を$[ア]$といい,表すことができない数を$[イ]$という.
(2)$x$と$y$についての$1$次不等式$ax-2y>4$と$x+by<a$の解が一致しているとき,定数$a$と$b$の値をそれぞれ求めなさい.
(3)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=4$,$\mathrm{AC}=7$,$\angle \mathrm{A}={120}^\circ$,$\angle \mathrm{A}$の$2$等分線と$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,$\mathrm{AD}$の長さを求めなさい.
(4)$x^4-4$を複素数の範囲で因数分解しなさい.
(5)$y=xe^{-x}$を微分しなさい.

(6)$\displaystyle \int_0^{\frac{\pi}{2}} x \sin x \, dx$を求めなさい.
愛知教育大学 国立 愛知教育大学 2013年 第7問
$2$つの実数$a,\ b$は$|2a|-2<b<2$をみたしている.このとき,$x$の$4$次方程式
\[ x^4+ax^3+bx^2+ax+1=0 \cdots\cdots (*)\]
を考える.

(1)$x \neq 0$とする.$\displaystyle z=x+\frac{1}{x}$とおくとき,方程式$(*)$を$z$で表せ.
(2)(1)で求めた$z$の方程式の解は,すべて絶対値が$2$以下の実数であることを示せ.
(3)複素数$\alpha=p+qi$($p,\ q$は実数)に対し,$\sqrt{p^2+q^2}$を複素数$\alpha$の「大きさ」ということにする.ただし$i$は虚数単位を表す.このとき,$4$次方程式$(*)$の解はすべて虚数で,それらの大きさはすべて$1$であることを示せ.
鳥取大学 国立 鳥取大学 2013年 第4問
実数$t$の関数$\alpha(t),\ \beta(t)$を$\displaystyle \alpha(t)=\frac{e^t+e^{-t}}{2}$,$\displaystyle \beta(t)=\frac{e^t-e^{-t}}{2}$で定める.実数の定数$p$に対して点$\mathrm{P}(x,\ y)$の$x$座標および$y$座標を,複素数
\[ z=\frac{ip \alpha(t)+\beta(t)}{ip \beta(t)+\alpha(t)} \]
の実部および虚部でそれぞれ与える.ただし$i$は虚数単位とする.

(1)$\{\alpha(t)\}^2-\{\beta(t)\}^2=1$となることを示し,$x,\ y$を$t$の関数として表せ.
(2)点$\mathrm{P}$の$x$座標の$t \to \infty$および$t \to -\infty$のときの極限値をそれぞれ求めよ.
(3)$p \neq 0$のとき,点$\mathrm{P}$の描く曲線を$x$と$y$の関係式で表せ.
西南学院大学 私立 西南学院大学 2013年 第1問
以下の問に答えよ.

(1)不等式$x^2-2x-30<0$を満たす整数$x$は,全部で$[アイ]$個ある.
(2)有理数$m$と$n$について,$\displaystyle (2 \sqrt{2}+3)m+(5 \sqrt{2}-1)n=\frac{1}{3 \sqrt{2}-2}$が成立するとき,$\displaystyle m=\frac{[ウエ]}{[オカキ]}$,$\displaystyle n=\frac{[ク]}{[オカキ]}$である.
(3)$2$乗して$7+24i$となる複素数は,$\pm ([ケ]+[コ]i)$である.
神奈川大学 私立 神奈川大学 2013年 第1問
次の空欄$[ ]$を適当に補え.

(1)三角形$\mathrm{ABC}$において,$\mathrm{AC}=7$,$\mathrm{AB}=3$,$\angle \mathrm{BAC}=120^\circ$のとき,$\mathrm{BC}=[ア]$である.
(2)方程式$3 \log_8x+\log_2(x-8)=7$を解くと,$x=[イ]$である.
(3)$3+i$をかけると$1+17i$となる複素数を,$a+bi$の形で表すと$[ウ]$である.ただし,$a,\ b$は実数,$i$は虚数単位である.
(4)$1$つのサイコロを$6$回投げて,$1$の目と$2$の目がそれぞれちょうど$2$回ずつ出る確率は$\displaystyle [エ]$である.
愛知工業大学 私立 愛知工業大学 2013年 第1問
次の$[ ]$を適当に補え.

(1)$\displaystyle \frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}+\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}=[ ]$,$\displaystyle \left( \frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}} \right)^2+\left( \frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}} \right)^2=[ ]$である.

(2)$10$本のくじの中に$2$本の当たりくじがある.このくじを$\mathrm{A}$君が$2$本引き,次に$\mathrm{B}$さんが$2$本引く.ただし,引いたくじはもとに戻さないとする.このとき,$\mathrm{A}$君が$1$本も当たらない確率は$[ ]$である.また,$\mathrm{B}$さんが少なくとも$1$本当たる確率は$[ ]$である.
(3)$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{AB}$の中点を$\mathrm{P}$,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{Q}$とする.このとき,$\overrightarrow{\mathrm{OP}}$と$\mathrm{OQ}$の内積は$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OQ}}=[ ]$である.また,$\triangle \mathrm{OPQ}$の面積は$[ ]$である.
(4)複素数$z=x+yi$($x,\ y$は実数,$i$は虚数単位)に対して,$|z|=\sqrt{x^2+y^2}$とする.このとき,$|z|=1$と$|z-i|=1$を同時にみたす複素数$z$は$z=[ ]$である.
(5)$\displaystyle 0<\theta<\frac{\pi}{2}$とする.$\displaystyle \frac{1}{\sin \theta}+\frac{1}{\cos \theta}=2 \sqrt{6}$のとき,$\sin \theta \cos \theta=[ ]$であり,$\theta=[ ]$である.
(6)$\displaystyle \int_0^{\frac{\pi}{4}} x \sin 3x \, dx=[ ]$
藤田保健衛生大学 私立 藤田保健衛生大学 2013年 第1問
次の問いに答えよ.

(1)$0 \leqq \theta<2\pi$とする.$2 \sin^2 \theta-3 \cos \theta-3 \geqq 0$を満足する$\theta$の範囲は$[ ]$であり,この$\theta$に対する$\tan \theta$の最大値は$[ ]$である.
(2)数字$1$のカード$1$枚,数字$3$のカード$2$枚,数字$a$($a$は$1,\ 3,\ 6$以外の正の整数)のカード$2$枚,数字$6$のカード$b$枚の中から無作為に$1$枚のカードを取り出したとき,そのカードに記された数字の期待値が$\displaystyle \frac{9}{2}$になった.このとき$(a,\ b)$の組をすべて求めると$(a,\ b)=[ ]$である.
(3)$f(x)=x^6-2x^4-x^2+2$とする.$f(x)$を整数の範囲で因数分解すると$[ ]$となり,複素数の範囲で因数分解すると$[ ]$となる.
スポンサーリンク

「複素数」とは・・・

 まだこのタグの説明は執筆されていません。