タグ「表面」の検索結果

1ページ目:全7問中1問~10問を表示)
早稲田大学 私立 早稲田大学 2016年 第4問
$xy$平面上の原点を中心とする単位円を底面とし,点$\mathrm{P}(t,\ 0,\ 1)$を頂点とする円錐を$\mathrm{K}$とする.$t$が$-1 \leqq t \leqq 1$の範囲を動くとき,円錐$\mathrm{K}$の表面および内部が通過する部分の体積は$\displaystyle \frac{\pi+[ナ]}{[ニ]}$である.
兵庫県立大学 公立 兵庫県立大学 2013年 第4問
地球を半径$1$の完全な球と仮定し,その球面を$S$と表す.また,地球の中心$\mathrm{O}$,そして,$S$上の,北緯$30^\circ$東経$60^\circ$の点$\mathrm{A}$,および,南緯$30^\circ$西経$60^\circ$の点$\mathrm{B}$の$3$点を含む平面を$\alpha$とする.このとき,次の問に答えなさい.

(1)点$\mathrm{P}$,$\mathrm{Q}$を,赤道上にあり,それぞれ,東経$0^\circ$,東経$90^\circ$の点とする.また,北極点を点$\mathrm{R}$とする.そこで,原点が地球の中心$\mathrm{O}$であり,さらに,点$\mathrm{P}$が$(1,\ 0,\ 0)$,点$\mathrm{Q}$が$(0,\ 1,\ 0)$,そして,点$\mathrm{R}$が$(0,\ 0,\ 1)$と表される空間座標を考える.このとき,点$\mathrm{A}$,$\mathrm{B}$の座標をそれぞれ求めなさい.
(2)地球表面$S$上の東経が$135^\circ$の点で,平面$\alpha$上にあるものの緯度$\theta (-90^\circ \leqq \theta \leqq 90^\circ)$に対して,$\tan \theta$を求めなさい.ただし,北極点の緯度は$90^\circ$,南極点の緯度は$-90^\circ$とする.
上智大学 私立 上智大学 2012年 第3問
一辺の長さが$1$の正四面体$\mathrm{OABC}$を考える.底面$\mathrm{ABC}$の内接円の半径を$r$とおき,頂点$\mathrm{O}$を通り底面$\mathrm{ABC}$に垂直な直線からの距離が$r$以下である点全体からなる円柱を$T$とする.

(1)$\displaystyle r=\frac{\sqrt{[ネ]}}{[ノ]}$である.
(2)正四面体$\mathrm{OABC}$の高さは$\displaystyle \frac{\sqrt{[ハ]}}{[ヒ]}$である.
(3)辺$\mathrm{AB}$の中点と頂点$\mathrm{O}$とを結ぶ線分上に点$\mathrm{P}$をとり,$x=\mathrm{OP}$とおく.$\mathrm{P}$を通り底面$\mathrm{ABC}$に平行な平面による側面$\mathrm{OAB}$の切り口を$L$とする.
$L$が$T$に含まれるような$x$の最大値を$x_1$とすると
\[ x_1=\frac{\sqrt{[フ]}}{[ヘ]} \]
である.
$\displaystyle x_1 \leqq x \leqq \frac{\sqrt{3}}{2}$のとき,$L$と$T$の共通部分の長さは
\[ \frac{[ホ]}{[マ]} \sqrt{\frac{[ミ]}{[ム]}-x^2} \]
である.
正四面体$\mathrm{OABC}$の表面で$T$に含まれる部分の面積は
\[ \frac{\pi}{[メ]} \]
である.
日本女子大学 私立 日本女子大学 2012年 第3問
点$\mathrm{H}$を中心,線分$\mathrm{BC}$を直径とする円を底面とし,点$\mathrm{O}$を頂点とする円錐を考える.ただし,線分$\mathrm{OH}$は底面に対して垂直であるとする.右側の図は円錐の表面の展開図の底面以外の部分である.左側の図のように底面に平行な平面で円錐を切断する.この切断面の円と母線$\mathrm{OB}$との交点を$\mathrm{A}$,母線$\mathrm{OC}$との交点を$\mathrm{D}$,直線$\mathrm{OH}$との交点を$\mathrm{G}$とする.さらに,線分$\mathrm{AB}$上に点$\mathrm{E}$をとる.左側の図で線分の長さが$\mathrm{AD}=2$,$\mathrm{BC}=8$,$\mathrm{GH}=6 \sqrt{2}$,$\mathrm{AE}=3$のとき,以下の問いに答えよ.

(1)線分$\mathrm{AB}$の長さを求めよ.
(2)線分$\mathrm{OA}$の長さと,この展開図の扇形の中心角$\theta$の大きさを求めよ.
(3)円錐の表面上で,底面を横切らずに,点$\mathrm{B}$から母線$\mathrm{OC}$上の点を経て点$\mathrm{E}$に至る最短距離を,この展開図を利用して求めよ.
(4)母線$\mathrm{OC}$と$(3)$の最短距離を与える線の交点を$\mathrm{P}$とする.線分$\mathrm{CP}$の長さを求めよ.
(図は省略)
釧路公立大学 公立 釧路公立大学 2011年 第3問
半径が$a$の球に内接する直円錐のうち,体積が最も大きいものを直円錐$C$とし,その高さを$h$,体積を$V$とする.ただし,$a$は定数であり,円周率は$\pi$とする.このとき,以下の各問に答えよ.

(1)直円錐$C$の体積$V$を$h$の関数で表せ.
(2)$a=6$のとき,$h$と$V$を求めよ.
(3)$(2)$において,直円錐$C$の表面を底面の円と側面の扇形に分解したとき,扇形の中心角$\theta$を求めよ.
中央大学 私立 中央大学 2010年 第2問
地球が半径$6378 \, \mathrm{km}$の完全な球であると仮定する.地球の中心を$\mathrm{O}$,北緯$45$度,東経$150$度の地点を$\mathrm{A}$,南緯$45$度,西経$120$度の地点を$\mathrm{B}$とする.このとき,次の問いに答えよ.

(1)$\angle \mathrm{AOB}$の大きさを求めよ.
(2)$\mathrm{A}$から$\mathrm{B}$へ地球の表面上を最短の時間で移動するときの$\mathrm{AB}$間の距離を求めよ.ただし,円周率の値は$3.14$とする.
岐阜薬科大学 公立 岐阜薬科大学 2010年 第2問
一辺の長さが$1$の正二十面体$W$のすべての頂点が球$S$の表面上にあるとき,次の問いに答えよ.なお,正二十面体は,すべての面が合同な正三角形であり,各頂点は$5$つの正三角形に共有されている.

(1)正二十面体の頂点の総数を求めよ.
(2)正二十面体$W$の$1$つの頂点を$\mathrm{A}$,頂点$\mathrm{A}$からの距離が$1$である$5$つの頂点を$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.$\displaystyle \sin 36^\circ=\frac{\sqrt{10-2 \sqrt{5}}}{4}$を用いて,正五角形$\mathrm{BCDEF}$の外接円の半径$R$と対角線$\mathrm{BE}$の長さを求めよ.
(3)$2$つの頂点$\mathrm{D}$,$\mathrm{E}$からの距離が$1$である$2$つの頂点のうち,頂点$\mathrm{A}$でない方を$\mathrm{G}$とする.球$S$の直径$\mathrm{BG}$の長さを求めよ.
(4)球$S$の中心を$\mathrm{O}$とする.$\triangle \mathrm{DEG}$を底面とする三角錐$\mathrm{ODEG}$の体積を求めよ.
スポンサーリンク

「表面」とは・・・

 まだこのタグの説明は執筆されていません。