タグ「表裏」の検索結果

1ページ目:全13問中1問~10問を表示)
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
硬貨を$1$枚投げて表が出れば$\mathrm{A}$に$1$点,裏が出れば$\mathrm{B}$に$1$点を与えることを繰り返す.硬貨を$5$回投げ終わった時点で$\mathrm{A}$の得点は$3$点,$\mathrm{B}$の得点は$2$点であった.なお,硬貨は表裏が等しい確率で出るものとする.

(1)$6$回目以降,$\mathrm{A}$,$\mathrm{B}$のどちらかが$5$点を取るまでの各回の得点の与え方を樹形図で表すと,その場合の数は$[$11$][$12$]$通りであることがわかる.そして,$\mathrm{A}$が$\mathrm{B}$より先に$5$点を取る確率は$\displaystyle \frac{[$13$][$14$]}{[$15$][$16$]}$である.
(2)$6$回目以降の各回の得点の与え方を次のように変更する.$\mathrm{A}$は$1,\ 3,\ 5$と書かれたカードがそれぞれ$1$枚ずつ入った袋から,$\mathrm{B}$は$2,\ 4$と書かれたカードが$1$枚ずつ入った袋から,中を見ずに$1$枚取り出し,大きい数字の書かれたカードを取り出した方に$1$点を与える.このとき,各回ごとに$\mathrm{A}$が得点する確率は$\displaystyle \frac{[$17$]}{[$18$]}$であり,$\mathrm{A}$が先に$5$点を取る確率は$\displaystyle \frac{[$19$][$20$]}{[$21$][$22$]}$である.
(3)$6$回目以降について,$\mathrm{A}$の袋は$(2)$と同じとし,$\mathrm{B}$の袋には$6$と書かれたカードを$1$枚追加して,$(2)$と同様に各回の得点の与え方を定める.このとき$\mathrm{A}$が先に$5$点を取る確率は$\displaystyle \frac{[$23$][$24$]}{[$25$][$26$]}$である.
宮崎大学 国立 宮崎大学 2014年 第4問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人がそれぞれある地域の東公園,西公園および北公園のいずれかに行こうとしている.この$3$人は次のように,硬貨の表裏によって,どの公園に行くのかを決める.
\begin{itemize}
$\mathrm{A}$は手持ちの硬貨を$1$枚投げて,表が出たら東公園に行く.裏が出たら西公園に行く.
$\mathrm{B}$は手持ちの硬貨を$1$枚投げて,表が出たら西公園に行く.裏が出たら,もう$1$度その硬貨を投げて,表が出たら東公園に行き,裏が出たら北公園に行く.
$\mathrm{C}$は手持ちの硬貨を$1$枚投げて,表が出たら北公園に行く.裏が出たら,もう$1$度その硬貨を投げて,表が出たら東公園に行き,裏が出たら西公園に行く.
\end{itemize}
ただし,$3$人が使用する硬貨は,表,裏がそれぞれ$\displaystyle \frac{1}{2}$の確率で出るものとする.このとき,次の各問に答えよ.

(1)$\mathrm{A}$と$\mathrm{B}$が同じ公園に行く確率を求めよ.ただし,$\mathrm{C}$はどの公園に行ってもよいものとする.
(2)$\mathrm{B}$と$\mathrm{C}$が同じ公園に行く確率を求めよ.ただし,$\mathrm{A}$はどの公園に行ってもよいものとする.
(3)$3$人が同じ公園に行く確率を求めよ.
(4)少なくとも$2$人が同じ公園に行く確率を求めよ.
宮崎大学 国立 宮崎大学 2014年 第2問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人がそれぞれある地域の東公園,西公園および北公園のいずれかに行こうとしている.この$3$人は次のように,硬貨の表裏によって,どの公園に行くのかを決める.
\begin{itemize}
$\mathrm{A}$は手持ちの硬貨を$1$枚投げて,表が出たら東公園に行く.裏が出たら西公園に行く.
$\mathrm{B}$は手持ちの硬貨を$1$枚投げて,表が出たら西公園に行く.裏が出たら,もう$1$度その硬貨を投げて,表が出たら東公園に行き,裏が出たら北公園に行く.
$\mathrm{C}$は手持ちの硬貨を$1$枚投げて,表が出たら北公園に行く.裏が出たら,もう$1$度その硬貨を投げて,表が出たら東公園に行き,裏が出たら西公園に行く.
\end{itemize}
ただし,$3$人が使用する硬貨は,表,裏がそれぞれ$\displaystyle \frac{1}{2}$の確率で出るものとする.このとき,次の各問に答えよ.

(1)$\mathrm{A}$と$\mathrm{B}$が同じ公園に行く確率を求めよ.ただし,$\mathrm{C}$はどの公園に行ってもよいものとする.
(2)$\mathrm{B}$と$\mathrm{C}$が同じ公園に行く確率を求めよ.ただし,$\mathrm{A}$はどの公園に行ってもよいものとする.
(3)$3$人が同じ公園に行く確率を求めよ.
(4)少なくとも$2$人が同じ公園に行く確率を求めよ.
青山学院大学 私立 青山学院大学 2014年 第1問
$1$枚の硬貨を$7$回投げるとき,表が続いて出る回数の最大値を$X$とする.たとえば,裏表表表裏表表であれば,$X=3$である.

(1)$X=5$となる確率は$\displaystyle \frac{[$1$]}{[$2$][$3$][$4$]}$である.

(2)$X=4$となる確率は$\displaystyle \frac{[$5$]}{[$6$][$7$]}$である.

(3)$X=3$となる確率は$\displaystyle \frac{[$8$][$9$]}{[$10$][$11$][$12$]}$である.
九州大学 国立 九州大学 2013年 第3問
横一列に並んだ6枚の硬貨に対して,以下の操作$\mathrm{L}$と操作$\mathrm{R}$を考える.

\mon[$\mathrm{L}:$] さいころを投げて,出た目と同じ枚数だけ左端から順に硬貨の表と裏を反転する.
\mon[$\mathrm{R}:$] さいころを投げて,出た目と同じ枚数だけ右端から順に硬貨の表と裏を反転する.

たとえば,表表裏表裏表と並んだ状態で操作$\mathrm{L}$を行うときに,3の目が出た場合は,裏裏表表裏表となる.以下,「最初の状態」とは硬貨が6枚とも表であることとする.

(1)最初の状態から操作$\mathrm{L}$を2回続けて行うとき,表が1枚となる確率を求めよ.
(2)最初の状態から$\mathrm{L},\ \mathrm{R}$の順に操作を行うとき,表の枚数の期待値を求めよ.
(3)最初の状態から$\mathrm{L},\ \mathrm{R},\ \mathrm{L}$の順に操作を行うとき,すべての硬貨が表となる確率を求めよ.
九州大学 国立 九州大学 2013年 第3問
横一列に並んだ6枚の硬貨に対して,以下の操作$\mathrm{L}$と操作$\mathrm{R}$を考える.

\mon[$\mathrm{L}:$] さいころを投げて,出た目と同じ枚数だけ左端から順に硬貨の表と裏を反転する.
\mon[$\mathrm{R}:$] さいころを投げて,出た目と同じ枚数だけ右端から順に硬貨の表と裏を反転する.

たとえば,表表裏表裏表と並んだ状態で操作$\mathrm{L}$を行うときに,3の目が出た場合は,裏裏表表裏表となる.以下,「最初の状態」とは硬貨が6枚とも表であることとする.

(1)最初の状態から操作$\mathrm{L}$を2回続けて行うとき,表が1枚となる確率を求めよ.
(2)最初の状態から$\mathrm{L},\ \mathrm{R}$の順に操作を行うとき,表の枚数の期待値を求めよ.
(3)最初の状態から$\mathrm{L},\ \mathrm{R},\ \mathrm{L}$の順に操作を行うとき,すべての硬貨が表となる確率を求めよ.
東京大学 国立 東京大学 2013年 第3問
$\mathrm{A}$,$\mathrm{B}$の$2$人がいる.投げたときに表裏の出る確率はそれぞれ$\displaystyle \frac{1}{2}$のコインが$1$枚あり,最初は$\mathrm{A}$がそのコインを持っている.次の操作を繰り返す.

(i) $\mathrm{A}$がコインを持っているときは,コインを投げ,表が出れば$\mathrm{A}$に$1$点を与え,コインは$\mathrm{A}$がそのまま
持つ.裏が出れば,両者に点を与えず,$\mathrm{A}$はコインを$\mathrm{B}$に渡す.
(ii) $\mathrm{B}$がコインを持っているときは,コインを投げ,表が出れば$\mathrm{B}$に$1$点を与え,コインは$\mathrm{B}$がそのまま
持つ.裏が出れば,両者に点を与えず,$\mathrm{B}$はコインを$\mathrm{A}$に渡す.

そして$\mathrm{A}$,$\mathrm{B}$のいずれかが$2$点を獲得した時点で,$2$点を獲得した方の勝利とする.たとえば,コインが表,裏,表,表と出た場合,この時点では$\mathrm{A}$は$1$点,$\mathrm{B}$は$2$点を獲得しているので$\mathrm{B}$の勝利となる.

(1)$\mathrm{A}$,$\mathrm{B}$あわせてちょうど$n$回コインを投げ終えたときに$\mathrm{A}$の勝利となる確率$p(n)$を求めよ.
(2)$\displaystyle \sum_{n=1}^\infty p(n)$を求めよ.
東京大学 国立 東京大学 2013年 第4問
$\mathrm{A}$,$\mathrm{B}$の$2$人がいる.投げたときに表裏の出る確率はそれぞれ$\displaystyle \frac{1}{2}$のコインが$1$枚あり,最初は$\mathrm{A}$がそのコインを持っている.次の操作を繰り返す.

(i) $\mathrm{A}$がコインを持っているときは,コインを投げ,表が出れば$\mathrm{A}$に$1$点を与え,コインは$\mathrm{A}$がそのまま
持つ.裏が出れば,両者に点を与えず,$\mathrm{A}$はコインを$\mathrm{B}$に渡す.
(ii) $\mathrm{B}$がコインを持っているときは,コインを投げ,表が出れば$\mathrm{B}$に$1$点を与え,コインは$\mathrm{B}$がそのまま
持つ.裏が出れば,両者に点を与えず,$\mathrm{B}$はコインを$\mathrm{A}$に渡す.

そして$\mathrm{A}$,$\mathrm{B}$のいずれかが$2$点を獲得した時点で,$2$点を獲得した方の勝利とする.たとえば,コインが表,裏,表,表と出た場合,この時点では$\mathrm{A}$は$1$点,$\mathrm{B}$は$2$点を獲得しているので$\mathrm{B}$の勝利となる. \\
$\mathrm{A}$,$\mathrm{B}$あわせてちょうど$n$回コインを投げ終えたときに$\mathrm{A}$の勝利となる確率$p(n)$を求めよ.
宮崎大学 国立 宮崎大学 2013年 第5問
最初,数直線上の原点に点$\mathrm{P}$を置き,コインを$1$回投げるごとに以下のように点$\mathrm{P}$の位置を定める.

\mon[$①$] 点$\mathrm{P}$の座標が$-2$以上$3$以下のとき,コインの表が出れば正の向きに$1$だけ点$\mathrm{P}$を進め,裏が出れば負の向きに$1$だけ点$\mathrm{P}$を進める.
\mon[$②$] 点$\mathrm{P}$の座標が$-3$または$4$のとき,コインの表裏にかかわらず点$\mathrm{P}$を動かさない.

コインを投げて$①,\ ②$に従い点$\mathrm{P}$の位置を定める操作を$6$回行う.この$6$回の操作によって定めた点$\mathrm{P}$の最終的な位置の座標を$a$とする.ただし,コインの表と裏が出る確率はそれぞれ$\displaystyle \frac{1}{2}$とする.このとき,次の各問に答えよ.

(1)$a=-3$となる確率と$a=4$となる確率をそれぞれ求めよ.
(2)$a$の期待値を求めよ.
徳島大学 国立 徳島大学 2012年 第4問
表と裏のあるコイン14枚を一列に並べる.隣接する2枚の組すべてに着目し,表表,裏裏,表裏,裏表となる組の個数をそれぞれ数える.例えば,「表表表裏裏表表表裏裏裏裏裏裏」の順に並べた場合,表表は4個,裏裏は6個,表裏は2個,裏表は1個である.次の問いに答えよ.

(1)表表が0個,裏裏が11個,表裏が1個,裏表が1個となる並べ方は何通りか.
(2)表表が0個,裏裏が9個,表裏が2個,裏表が2個となる並べ方は何通りか.
(3)表表が2個,裏裏が6個,表裏が3個,裏表が2個となる並べ方は何通りか.
スポンサーリンク

「表裏」とは・・・

 まだこのタグの説明は執筆されていません。