タグ「行列」の検索結果

9ページ目:全327問中81問~90問を表示)
弘前大学 国立 弘前大学 2013年 第3問
行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$に対して$D(A)=ad-bc$,$T(A)=a+d$と定める.実数$x,\ y$に対して行列$X$を$X=\left( \begin{array}{cc}
x & 1 \\
1 & y
\end{array} \right)$とおき,行列$E$を$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とし,行列$O$を$O=\left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right)$とする.このとき,次の問いに答えよ.

(1)行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$に対して等式$A^2-T(A)A+D(A)E=O$が成り立つことを証明せよ.
(2)$D(X)<0$かつ$T(X)>0$となる$(x,\ y)$の領域を図示せよ.
(3)$X$が逆行列をもたないとき,$T(X^{2n})$の最小値を$n$を用いて表せ.ただし,$n$は正の整数である.
香川大学 国立 香川大学 2013年 第2問
$0<\theta \leqq \pi$に対して$A=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$とおく.$n$を$2$以上の自然数とするとき,次の問に答えよ.

(1)$A^n$を求めよ.
(2)$S_n=E+A+A^2+\cdots +A^{n-1}$とおくとき,$S_n=P(A^n-E)$となる行列$P$を求めよ.ここで,$E$は単位行列である.
(3)$\displaystyle \theta=\frac{2\pi}{n}$のとき,$1+\cos \theta+\cos 2\theta+\cdots +\cos n\theta$を求めよ.
室蘭工業大学 国立 室蘭工業大学 2013年 第5問
$s,\ t$を実数とする.行列$A=\left( \begin{array}{cc}
-\displaystyle\frac{1}{2} & -\displaystyle\frac{\sqrt{3}}{2} \\
s & t
\end{array} \right)$は逆行列$A^{-1}$をもち,$A^{-1}=A$であるとする.

(1)$s,\ t$の値を求めよ.
(2)行列$A$は直線$y=mx$($m$は実数)に関する対称移動を表している.$m$の値を求めよ.
茨城大学 国立 茨城大学 2013年 第2問
以下の各問に答えよ.

(1)不等式$x+|y-1| \leqq 1$の表す領域を図示せよ.
(2)$a$を実数とする.このとき,
\[ A \left( \begin{array}{c}
1 \\
2
\end{array} \right)=\left( \begin{array}{c}
3 \\
1 \\
2
\end{array} \right) \quad \text{かつ} \quad A \left( \begin{array}{c}
2 \\
a
\end{array} \right)=\left( \begin{array}{c}
2 \\
1 \\
3
\end{array} \right) \]
を満たす行列$A$が存在するかどうかを調べよ.存在するときは$A$を求め,存在しないときは「存在しない」と答えよ.
大阪教育大学 国立 大阪教育大学 2013年 第2問
直線$y=mx \ (m \neq 0)$を$\ell$とし,行列$\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$で表される平面上の$1$次変換$f$は次の二つの条件を満たすとする.

$\ell$の各点は$f$で動かない.
$f$は点$\mathrm{A}(1,\ 0)$を,$\mathrm{A}$を通り$\ell$に平行な直線上の点に移す.

このとき,次の問いに答えよ.

(1)$a,\ c,\ d$を$b,\ m$を用いて表せ.
(2)$ad-bc$の値を求めよ.
(3)$f$により平面上の任意の点$\mathrm{P}$は,$\mathrm{P}$を通り$\ell$に平行な直線上の点に移ることを示せ.
東京農工大学 国立 東京農工大学 2013年 第1問
$a$を実数とする.行列
\[ A=\left( \begin{array}{cc}
a & 3 \\
-2 & -1
\end{array} \right),\quad P=\left( \begin{array}{cc}
1 & 3 \\
-1 & -2
\end{array} \right) \]
について,次の問いに答えよ.

(1)$P^{-1}AP$の$(1,\ 2)$成分と$(2,\ 1)$成分が等しくなるような$a$の値を求めよ.
(2)$a$を(1)で求めた値とするとき,自然数$n$に対して$A^n$を求めよ.
(3)$a$を(1)で求めた値とするとき,$A^n$が表す$1$次変換によって,$xy$平面上の$2$点$\mathrm{Q}(1,\ -1)$と$\mathrm{R}(0,\ 2)$とが移る$2$点を通る直線を$L_n$とおく.$L_n$の$y$切片を$y_n$とするとき,$\displaystyle \lim_{n \to \infty}y_n$を求めよ.
九州工業大学 国立 九州工業大学 2013年 第2問
$a,\ b$を実数とし,行列$A$を$2$次の正方行列とする.$x,\ y$についての連立$1$次方程式を,行列を用いて
\[ A \left( \begin{array}{c}
x \\
y
\end{array} \right)=\left( \begin{array}{c}
a \\
b
\end{array} \right) \cdots\cdots (*) \]
と表す.次に答えよ.

(1)$A=\left( \begin{array}{cc}
3 & 2 \\
6 & 4
\end{array} \right)$のとき,連立$1$次方程式$(*)$を解け.
(2)$c$を実数とし,$a \neq 0,\ b \neq 0$とする.また,$A=\left( \begin{array}{cc}
a & b \\
c & 1
\end{array} \right)$とする.

(i) $a \neq bc$とする.連立$1$次方程式$(*)$がただ$1$つの解をもつことを示せ.また,連立$1$次方程式$A^2 \left( \begin{array}{c}
x \\
y
\end{array} \right)=\left( \begin{array}{c}
a \\
b
\end{array} \right)$もただ$1$つの解をもつことを示せ.
(ii) 連立$1$次方程式$(*)$が解をもたないための必要十分条件を$a,\ b,\ c$を用いて表せ.この条件が成り立つとき,連立$1$次方程式$A^2 \left( \begin{array}{c}
x \\
y
\end{array} \right)=\left( \begin{array}{c}
a \\
b
\end{array} \right)$も解をもたないことを示せ.

(iii) 連立$1$次方程式$(*)$が解を無数にもつための必要十分条件を$a,\ b,\ c$を用いて表せ.この条件が成り立つとき,自然数$m$に対して,連立$1$次方程式
\[ (A+A^2+A^3+\cdots +A^{2m-1}) \left( \begin{array}{c}
x \\
y
\end{array} \right)=\left( \begin{array}{c}
a \\
b
\end{array} \right) \]
も解を無数にもつことを示せ.
茨城大学 国立 茨城大学 2013年 第3問
$\displaystyle \theta=\frac{2\pi}{3}$とし,$A=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$とおく.また,$2$次の単位行列を$E$で表す.以下の各問に答えよ.

(1)$A^3=E$を示せ.
(2)$r$を実数とする.自然数$k$に対して,行列$(rA)^{3k}+(rA)^{3k+1}+(rA)^{3k+2}$の$(1,\ 1)$成分を$a_k$とおくとき,$a_k$を$r$を用いて表せ.
(3)自然数$N$に対して$\displaystyle x_N=2 \sum_{k=0}^N a_k$とする.ただし$a_k$は,$k \geqq 1$のときは(2)で定めたものとし,$k=0$のときは$\displaystyle a_0=1-\frac{1}{2}r-\frac{1}{2}r^2$とおく.$-1<r<1$のとき,$\displaystyle f(r)=\lim_{N \to \infty}x_N$を求めよ.
(4)$r$が$-1<r<1$の範囲を動くとき,(3)で定めた$f(r)$のとりうる値の範囲を求めよ.
山形大学 国立 山形大学 2013年 第4問
行列
\[ A=\left( \begin{array}{cc}
\displaystyle\frac{3}{2} & -1 \\
1 & -\displaystyle\frac{1}{2}
\end{array} \right),\quad B=\left( \begin{array}{cc}
p & -2 \\
1 & q
\end{array} \right),\quad J=\left( \begin{array}{cc}
\displaystyle\frac{1}{2} & 1 \\
0 & \displaystyle\frac{1}{2}
\end{array} \right) \]
が$AB=BJ$を満たすとき,次の問いに答えよ.ただし,$p,\ q$は定数であり,以下で用いる$n$は自然数である.

(1)$p,\ q$の値を求めよ.
(2)$\displaystyle J^n=\frac{1}{2^n} \left( \begin{array}{cc}
1 & 2n \\
0 & 1
\end{array} \right)$を示せ.
(3)$\displaystyle A^n=\frac{1}{2^n} \left( \begin{array}{cc}
1+2n & -2n \\
2n & 1-2n
\end{array} \right)$を示せ.
(4)行列$A^n$の表す$1$次変換により,$xy$平面上の点$(p,\ 1)$,$(-2,\ q)$が,それぞれ点$\mathrm{P}_n$,$\mathrm{Q}_n$に移される.原点を$\mathrm{O}$として,$\overrightarrow{\mathrm{OP}}_n$と$\overrightarrow{\mathrm{OQ}}_n$のなす角を$\theta_n$とするとき,$\displaystyle \lim_{n \to \infty}\cos \theta_n$を求めよ.
山形大学 国立 山形大学 2013年 第4問
自然数$n$に対し,座標平面上の点$(n,\ 1)$を$\mathrm{P}_n$とする.また,$r$を正の実数とする.このとき,次の問に答えよ.

(1)$1$次変換$f$は,すべての$n$に対して$f(\mathrm{P}_n)=\mathrm{P}_{n+1}$を満たすとする.$f$を表す行列$A$を求めよ.
(2)$1$次変換$g$は,点$(1,\ 1)$を点$(-2r,\ 1)$に,点$(-2r,\ 1)$を点$(2r^2-r,\ 1)$に移すとする.$g$を表す行列$B$を求めよ.
(3)$C=ABA^{-1}$とする.行列$C^n$を推定し,それが正しいことを数学的帰納法によって示せ.
(4)行列$C^n$で表される$1$次変換による点$(1,\ r)$の像の$x$座標を$x_n$とする.$r<1$のとき,$\displaystyle \lim_{n \to \infty}x_n$を求めよ.
スポンサーリンク

「行列」とは・・・

 まだこのタグの説明は執筆されていません。