タグ「行列」の検索結果

18ページ目:全327問中171問~180問を表示)
山梨大学 国立 山梨大学 2012年 第5問
実数を成分とする行列
\[ M=\left( \begin{array}{cc}
1 & b \\
b & 1-a
\end{array} \right),\quad M^\prime=\left( \begin{array}{cc}
1 & b^\prime \\
b^\prime & 1-a^\prime
\end{array} \right),\quad P=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right) \]
が$MM^\prime=M^\prime M$,$a \neq 0$,$a^\prime \neq 0$を満たし,$P^{-1}MP$が対角行列であるとする.ここで,対角行列とは$\left( \begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array} \right)$の形の行列である.

(1)$a,\ b,\ a^\prime,\ b^\prime$の間に成り立つ関係式を求めよ.
(2)$\tan 2\theta$を$a,\ b$を用いた式で表せ.
(3)$P^{-1}M^\prime P$が対角行列であることを示せ.
東京海洋大学 国立 東京海洋大学 2012年 第1問
行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$で表される移動により点$(x,\ y)$が点$(x^\prime,\ y^\prime)$に移るとき
\[ x^{\prime 2}+y^{\prime 2}=x^2+y^2 \]
が常に成り立つとする.

(1)$\left( \begin{array}{cc}
a & c \\
b & d
\end{array} \right) \left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$が成り立つことを示せ.

(2)行列$A^2$で表される移動が,原点に関する対称移動になるような行列$A$をすべて求めよ.
愛媛大学 国立 愛媛大学 2012年 第4問
行列$A=\left( \begin{array}{cc}
-2 & 2 \\
2 & 1
\end{array} \right)$に対して
\[ X=-\frac{1}{5}(A-2E),\quad Y=\frac{1}{5}(A+3E) \]
とおく.ただし,$E$は$2$次の単位行列とする.

(1)$XY,\ YX,\ X^2,\ Y^2$を計算せよ.
(2)$A=aX+bY$を満たす実数$a,\ b$を求めよ.
(3)自然数$n$に対して$A^n$を求めよ.
早稲田大学 私立 早稲田大学 2012年 第4問
以下の問いに答えよ.

(1)無限級数$\displaystyle\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$の和は$\displaystyle\frac{[チ]}{[ツ]}$である.\\
\quad ただし,[ツ]はできるだけ小さな自然数で答えること.
(2)行列
\[ A=\frac{1}{\sqrt{2}} \biggl( \begin{array}{cc}
1 & -1 \\
1 & 1
\end{array} \biggr) \]
に対して,
\[ A^n = \biggl( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \biggr)\]
となる最小の自然数$n$は[テ]である.
(3)$\displaystyle \int_0^{\frac{\pi}{2}}(2-x^2\sin x)\,dx = [ト]$である.
早稲田大学 私立 早稲田大学 2012年 第1問
次の小問の解答を解答用紙の所定欄に記入せよ.

(1)実数$a,\ b$が$0 \leqq a \leqq \pi$,$a<b$をみたすとき,
\[ I(a,b) = \int_a^b e^{-x}\sin x\;dx \]
とおく.ただし,$e$は自然対数の底とする.
\[ \lim_{b \to \infty} I(a,\ b) = 0 \]
が成立するように$a$を定めよ.

(2)行列$A=
\begin{pmatrix}
\;\;\; a & b \;\;\;\; \\
\;\;\; c & d \;\;\;\;
\end{pmatrix}
$は$ad-bc=2$および$a+d=3$をみたし,かつ,ある行列
\[ B =
\begin{pmatrix}
\;\;\; 1 & 1 \;\;\;\; \\
\;\;\; 0 & 1 \;\;\;\;
\end{pmatrix}
\begin{pmatrix}
\;\;\; \alpha & 0 \;\;\;\; \\
\;\;\; 0 & \beta \;\;\;\;
\end{pmatrix}
\begin{pmatrix}
\;\;\; 1 & 1 \;\;\;\; \\
\;\;\; 0 & 1 \;\;\;\;
\end{pmatrix}^{-1}
\]
に対して$AB=BA$をみたしている.ただし$\alpha \neq \beta$とする.このような行列$A$をすべて求めよ.

(3)$c$を正の実数として,漸化式
\[ a_n = \frac{{a_{n-1}}^2}{3^n} \quad (n \geqq 1), \qquad a_0 = c \]
で定義される数列$\{a_n\}$を考える.このとき$\displaystyle\lim_{n \to \infty} a_n = \infty$となるような$c$の範囲を求めよ.
(4)実数$t$が$1 \leqq t \leqq 2$の範囲で動くとき,$xy$平面の直線
\[ y=(3t^2-4)x-2t^3 \]
が通る範囲を$H$とする.$H$の内,直線$x=1$と$\displaystyle x=\frac{20}{9}$ではさまれる部分の面積を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
次の各問いに答えよ.

(1)3つの行列の積
\[ \left(
x \quad y
\right) \left( \begin{array}{cc}
2 & a \\
a & 1
\end{array}
\right)
\left(
\begin{array}{c}
x \\
y
\end{array}
\right) \]
の成分が任意の実数$x,\ y$に対し0以上となるような実数$a$の範囲を不等式で表すと[ア]となる.
(2)$\angle B$が直角の直角三角形ABCの2辺AB,\ BCの長さをそれぞれ$3,\ 1$とする.また,$0<x<1$を満たす$x$に対し線分BCを$1:x$に外分する点をDとする.いま,$\angle \text{CAD}=2 \angle\text{BAC}$が成り立っているとすると,$x=[イ]$であり,$\triangle$ACDの外接円の半径は[ウ]である.
(3)関数$f(x),\ g(x)$が
\[
\left\{
\begin{array}{l}
f(x) = xe^x + 2x \displaystyle\int_0^2|g(t)|\, dt - 1 \\
\\
g(x) = x^2 -x \displaystyle\int_0^1 f(t)\,dt
\end{array}
\right.
\]
を満たすとき,$\displaystyle\int_0^2 |g(t)|\, dt$の値は[エ]または[オ]である.求める過程も解答欄(3)に書きなさい.
明治大学 私立 明治大学 2012年 第3問
行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$の成分は,$a+d-1=ad-bc$を満たすとする.また,数列$x_0,\ x_1,\ x_2,\ \cdots$と$y_0,\ y_1,\ y_2,\ \cdots$は
\[ \left( \begin{array}{c}
x_n \\
y_n
\end{array} \right)=A \left( \begin{array}{c}
x_{n-1} \\
y_{n-1}
\end{array} \right) \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすとする.座標平面上の点$(x_n,\ y_n)$を$\mathrm{P}_n$と表し,$\mathrm{O}$は原点とする.点$\mathrm{O}$,$\mathrm{P}_0$,$\mathrm{P}_1$は同一直線上にはないと仮定し,$g=ad-bc$とおく.
以下の$[ ]$にあてはまるものを,$g,\ n$を用いて表せ.

(1)$\overrightarrow{\mathrm{OP}}_2=([え]) \overrightarrow{\mathrm{OP}}_1+([お]) \overrightarrow{\mathrm{OP}}_0$である.
(2)$g \neq 1$のとき
\[ \overrightarrow{\mathrm{OP}}_n=\frac{[か]}{1-g} \overrightarrow{\mathrm{OP}}_1+\frac{[き]}{1-g} \overrightarrow{\mathrm{OP}}_0 \quad (n=2,\ 3,\ 4,\ \cdots) \]
である.
(3)$|g|<1$のとき
\[ \begin{array}{l}
\lim_{n \to \infty}x_n=[く]x_1+[け]x_0 \\
\lim_{n \to \infty}y_n=[く]y_1+[け]y_0
\end{array} \]
である.
(4)$0<g<1$とする.点$\displaystyle \left( \lim_{n \to \infty}x_n,\ \lim_{n \to \infty}y_n \right)$は線分$\mathrm{P}_1 \mathrm{P}_0$を$[こ]:1$に外分する.
明治大学 私立 明治大学 2012年 第3問
次の空欄$[ア]$から$[キ]$に当てはまるものを答えよ.ただし,自然数とは$1$以上の整数のことである.

行列$A,\ B,\ E$を$A=\left( \begin{array}{rr}
1 & 0 \\
0 & -1
\end{array} \right)$,$B=\left( \begin{array}{rr}
0 & -1 \\
1 & 0
\end{array} \right)$,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とする.

$M_0=E$とし,さいころをふって偶数が出れば$A$を左からかけ,奇数が出れば$B$を左からかける操作を$n$回繰り返すことにより行列$M_n$を定める.つまり,
\begin{itemize}
$n$回目に偶数が出たら$M_n=AM_{n-1}$,
$n$回目に奇数が出たら$M_n=BM_{n-1}$
\end{itemize}
と順々に$M_n (n=1,\ 2,\ 3,\ \cdots)$を定める.$M_n=A$となる確率を$p_n$とする.

(1)$p_1=[ア]$である.
(2)$A^a=E$をみたす最小の自然数$a$は$[イ]$である.$B^b=E$をみたす最小の自然数$b$は$[ウ]$である.$BA=AB^c$をみたす最小の自然数$c$は$[エ]$である.
(3)$M_0,\ M_1,\ M_2,\ \cdots$の中で相異なる行列は最大$[オ]$個である.
(4)$n$が偶数のときは$p_n=[カ]$であり,$n$が$3$以上の奇数のときは$p_n=[キ]$である.
北海学園大学 私立 北海学園大学 2012年 第7問
行列$A=\left( \begin{array}{cc}
3 & -2 \\
2 & 8
\end{array} \right)$,$P=\left( \begin{array}{cc}
2 & 1 \\
-1 & -2
\end{array} \right)$に対して,$B=P^{-1}AP$とおく.ただし,$P^{-1}$は$P$の逆行列を表す.

(1)$P$の逆行列$P^{-1}$を求めよ.
(2)行列$B$を求めよ.
(3)$n$を正の整数とするとき,行列$B^n$を$n$を用いて表せ.また,行列$A^n$を$n$を用いて表せ.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)$3$つの行列$A=\left( \begin{array}{cc}
5 & 3 \\
2 & 1
\end{array} \right)$,$B=\left( \begin{array}{rr}
1 & -3 \\
-2 & 5
\end{array} \right)$,$C=\left( \begin{array}{rr}
2 & -3 \\
-4 & 5
\end{array} \right)$がある.$A$の逆行列$A^{-1}$を求めると,$A^{-1}=[ア]$である.$B^2A^3CA$を求めると,$B^2A^3CA=[イ]$である.
(2)$k>1$とする.$2$次方程式$kx^2+(1-2k)x-2=0$の$2$つの解を$\alpha,\ \beta$とする.$2$次方程式$x^2-2(k+1)x+4k=0$の解の$1$つは$\beta$であり,もう$1$つの解を$\gamma$とする.このとき,$\beta$を求めると$\beta=[ウ]$である.さらに,$\beta-\alpha=\gamma-\beta$が成り立つとき,$k$の値を求めると$k=[エ]$である.
(3)$y=e^x+e^{-x}$とする.$y=3$のとき,$\displaystyle e^{\frac{x}{2}}+e^{-\frac{x}{2}}$の値は$\displaystyle e^{\frac{x}{2}}+e^{-\frac{x}{2}}=[オ]$である.また,$y=4$のとき,$x=[カ]$である.
(4)原点$\mathrm{O}$からの距離と点$\mathrm{A}(1,\ 1)$からの距離の比が$\sqrt{2}:1$である点$\mathrm{P}(x,\ y)$の軌跡は方程式$[キ]$で与えられる.この図形上の点$\mathrm{Q}(s,\ t)$における接線の傾きが$2$であるとき,$\mathrm{Q}$の座標は$(s,\ t)=[ク]$である.
(5)区別できない$9$個の球を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$の$4$つの箱のいずれかに入れる.$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$に入れた球の個数をそれぞれ$a,\ b,\ c,\ d$とし,$X=1000a+100b+10c+d$とする.$X$のとりうる値を小さい順に並べたときに$31$番目にくる値を求めると$[ケ]$であり,$X$が$4$桁の数となる球の入れ方は$[コ]$通りある.
スポンサーリンク

「行列」とは・・・

 まだこのタグの説明は執筆されていません。