タグ「行列」の検索結果

10ページ目:全327問中91問~100問を表示)
琉球大学 国立 琉球大学 2013年 第4問
$m$を正の定数とする.次の問いに答えよ.

(1)$xy$平面上に$2$点$\mathrm{O}(0,\ 0)$,$\mathrm{P}(1,\ m)$がある.このとき$2$点$\mathrm{Q}$,$\mathrm{R}$の座標を,$\triangle \mathrm{OPQ}$,$\triangle \mathrm{OPR}$がともに正三角形となるように定めよ.ただし,点$\mathrm{Q}$は$xy$平面上の$y>mx$となる領域に,点$\mathrm{R}$は$xy$平面上の$y<mx$となる領域に定めよ.
(2)$(1)$で定めた$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$について,一次変換$f$は点$\mathrm{P}$を同じ点$\mathrm{P}$に,点$\mathrm{Q}$を点$\mathrm{R}$に移すものとする.この一次変換$f$を表す行列$A$を求めよ.
群馬大学 国立 群馬大学 2013年 第7問
自然数$n$について,$0$以上$n$以下の整数$x,\ y$を座標にもつ点$(x,\ y)$全体の集合を$X_n$とする.行列$\left( \begin{array}{cc}
1 & 1 \\
2 & -1
\end{array} \right)$の表す一次変換による$X_n$の点の像全体の集合を$Y_n$とする.

(1)点$(187,\ 110)$は$Y_{100}$に含まれるかどうか理由をつけて述べよ.
(2)$X_5$と$Y_5$の共通部分$X_5 \cap Y_5$の点の個数を求めよ.
群馬大学 国立 群馬大学 2013年 第14問
自然数$n$について,$0$以上$n$以下の整数$x,\ y$を座標にもつ点$(x,\ y)$全体の集合を$X_n$とする.行列$\left( \begin{array}{cc}
1 & 1 \\
2 & -1
\end{array} \right)$の表す一次変換による$X_n$の点の像全体の集合を$Y_n$とする.$X_n$と$Y_n$の共通部分$X_n \cap Y_n$の点の個数を$a_n$とする.

(1)点$(187,\ 110)$は$Y_{100}$に含まれるかどうか理由をつけて述べよ.
(2)$a_5$を求めよ.
(3)自然数$m$について,$a_{6m}$を$m$を用いて表せ.
山形大学 国立 山形大学 2013年 第4問
自然数$n$に対し,座標平面上の点$(n,\ 1)$を$\mathrm{P}_n$とする.また,$r$を正の実数とする.このとき,次の問に答えよ.

(1)$1$次変換$f$は,すべての$n$に対して$f(\mathrm{P}_n)=\mathrm{P}_{n+1}$を満たすとする.$f$を表す行列$A$を求めよ.
(2)$1$次変換$g$は,点$(1,\ 1)$を点$(-2r,\ 1)$に,点$(-2r,\ 1)$を点$(2r^2-r,\ 1)$に移すとする.$g$を表す行列$B$を求めよ.
(3)$C=ABA^{-1}$とする.行列$C^n$を推定し,それが正しいことを数学的帰納法によって示せ.
(4)行列$C^n$で表される$1$次変換による点$(1,\ r)$の像の$x$座標を$x_n$とする.$r<1$のとき,$\displaystyle \lim_{n \to \infty}x_n$を求めよ.
滋賀医科大学 国立 滋賀医科大学 2013年 第3問
実数$a$に対し,行列$X(a)$を
\[ X(a)=\frac{1}{a^2+1} \left( \begin{array}{cc}
2a^2+1 & -a \\
-a & a^2+2
\end{array} \right) \]
と定める.

(1)ベクトル$\left( \begin{array}{c}
x_0 \\
y_0
\end{array} \right)$を考える.ベクトル$\left( \begin{array}{c}
x_0 \\
y_0
\end{array} \right)$,$X(a) \left( \begin{array}{c}
x_0 \\
y_0
\end{array} \right)$の大きさをそれぞれ$l_0,\ l_1$とおく.このとき
\[ l_0 \leqq l_1 \]
を示せ.ただしベクトル$\left( \begin{array}{c}
x \\
y
\end{array} \right)$の大きさとは$\sqrt{x^2+y^2}$のことである.
(2)(1)で$l_0=l_1$となるとき,$X(a) \left( \begin{array}{c}
x_0 \\
y_0
\end{array} \right)=\left( \begin{array}{c}
x_0 \\
y_0
\end{array} \right)$を示せ.
(3)$a,\ b$が異なる実数のとき,${X(a)}^m={X(b)}^n$となるような正の整数$m,\ n$は存在しないことを示せ.
九州工業大学 国立 九州工業大学 2013年 第3問
行列$A=\left( \begin{array}{cc}
3 & 4 \\
1 & 6
\end{array} \right)$について,以下の問いに答えよ.

(1)連立$1$次方程式$\left\{ \begin{array}{l}
3x+4y=kx \\
x+6y=ky
\end{array} \right.$が$x=y=0$以外の解をもつような実数$k$の値を$2$つ求めよ.
(2)(1)で求めた$k$の値を$a,\ b \ (a<b)$とし,$B=\left( \begin{array}{cc}
a & 0 \\
0 & b
\end{array} \right)$とする.実数$s,\ t$に対し,行列$P=\left( \begin{array}{cc}
s & t \\
1 & 1
\end{array} \right)$が$AP=PB$を満たすとき,実数$s,\ t$の値を求めよ.
(3)(2)で定めた行列$B$について,$B^n$(ただし,$n$は自然数)を推測し,その推測が正しいことを数学的帰納法で証明せよ.
(4)$A^n$を求めよ.ただし,$n$は自然数とする.
愛媛大学 国立 愛媛大学 2013年 第2問
行列$\left( \begin{array}{cc}
\displaystyle\frac{5}{2} & -\displaystyle\frac{1}{4} \\
a & b
\end{array} \right)$で表される$1$次変換を$f$とする.$f$は$3$点$\mathrm{A}(1,\ m)$,$\mathrm{B}(0,\ 1)$,$\mathrm{C}(m,\ -1)$に対して,次の$2$つの条件$①,\ ②$を満たすものとする.ただし,$\mathrm{O}$は原点である.

$①$ $\mathrm{A}$の$f$による像は$\mathrm{A}$自身である
$②$ $\mathrm{B}$の$f$による像を$\mathrm{B}^\prime$とすると,$\overrightarrow{\mathrm{BB^\prime}}$と$\overrightarrow{\mathrm{OC}}$は垂直である


(1)$a,\ b,\ m$の値を求めよ.
(2)$\mathrm{P}(x,\ y)$を任意の点とし,$\mathrm{P}$の$f$による像を$\mathrm{P}^\prime$とする.$\overrightarrow{\mathrm{PP^\prime}}$と$\overrightarrow{\mathrm{OC}}$の内積を求めよ.
(3)点$\mathrm{Q}(t,\ t^2-1)$の$f$による像を$\mathrm{Q}^\prime$とする.$|\overrightarrow{\mathrm{QQ^\prime}}|$の値が最小となる実数$t$の値を求めよ.
岐阜大学 国立 岐阜大学 2013年 第5問
$a,\ b$を$\displaystyle a^2+\frac{b^2}{6}=1$を満たす正の実数とする.行列$A=\left( \begin{array}{cc}
2 \sqrt{2}a & b \\
-b & -\sqrt{2}a
\end{array} \right)$に対して,以下の問に答えよ.

(1)実数$p,\ q$が$A^2=pA+qE$を満たすとき,$p,\ q$を$a$を用いて表せ.ただし,$E$は$2$次の単位行列とする.
(2)$\displaystyle a=\frac{1}{\sqrt{2}}$のとき,$\displaystyle \sum_{k=1}^{100}(-1)^kA^k$を求めよ.
(3)$\displaystyle a=\frac{1}{\sqrt{2}}$とし,$m$を正の整数とする.$x$と$y$についての方程式$A^m \left( \begin{array}{c}
x \\
y
\end{array} \right)=\left( \begin{array}{c}
-x \\
0
\end{array} \right)$が$x=y=0$以外の解をもつとき,$m$の満たす条件を求めよ.
東京海洋大学 国立 東京海洋大学 2013年 第1問
$S=\left( \begin{array}{cc}
2+3 \cos 2\theta & 3 \sin 2\theta \\
3 \sin 2\theta & 2-3 \cos 2\theta
\end{array} \right)$とする.以下,$\left( \begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array} \right)$の形の行列を対角行列と呼ぶ.

(1)$Q=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$とするとき,$D=Q^{-1}SQ$が対角行列になることを示せ.
(2)$2 \times 2$行列$X$が$XD=DX$を満たすとき,$X$は対角行列になることを示せ.
(3)$2 \times 2$行列$T$が$TS=ST$を満たすとき,$Q^{-1}TQ$は対角行列になることを示せ.
愛媛大学 国立 愛媛大学 2013年 第4問
行列$\left( \begin{array}{cc}
\displaystyle\frac{5}{2} & -\displaystyle\frac{1}{4} \\
a & b
\end{array} \right)$で表される$1$次変換を$f$とする.$f$は$3$点$\mathrm{A}(1,\ m)$,$\mathrm{B}(0,\ 1)$,$\mathrm{C}(m,\ -1)$に対して,次の$2$つの条件$①,\ ②$を満たすものとする.ただし,$\mathrm{O}$は原点である.

$①$ $\mathrm{A}$の$f$による像は$\mathrm{A}$自身である
$②$ $\mathrm{B}$の$f$による像を$\mathrm{B}^\prime$とすると,$\overrightarrow{\mathrm{BB^\prime}}$と$\overrightarrow{\mathrm{OC}}$は垂直である


(1)$a,\ b,\ m$の値を求めよ.
(2)$\mathrm{P}(x,\ y)$を任意の点とし,$\mathrm{P}$の$f$による像を$\mathrm{P}^\prime$とする.$\overrightarrow{\mathrm{PP^\prime}}$と$\overrightarrow{\mathrm{OC}}$の内積を求めよ.
(3)点$\mathrm{Q}(t,\ t^2-1)$の$f$による像を$\mathrm{Q}^\prime$とする.$|\overrightarrow{\mathrm{QQ^\prime}}|$の値が最小となる実数$t$の値を求めよ.
スポンサーリンク

「行列」とは・・・

 まだこのタグの説明は執筆されていません。