タグ「自身」の検索結果

2ページ目:全20問中11問~20問を表示)
富山県立大学 公立 富山県立大学 2013年 第4問
$a,\ b,\ c,\ d$は実数とする.$1$次変換とは,座標平面上の任意の点$(x,\ y)$を同じ平面上の点$(X,\ Y)$に移す変換で,その変換の規則が$\left( \begin{array}{c}
X \\
Y
\end{array} \right)=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right)$と表せるものである.このとき,行列$\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$を$1$次変換を表す行列という.次の変換が,$1$次変換であるならばその$1$次変換を表す行列を求め,$1$次変換でないならばその理由を述べよ.

(1)座標平面上の任意の点をそれ自身に移す変換
(2)座標平面上の任意の点を直線$y=-x$に関して対称な点に移す変換
(3)座標平面上の任意の点を$x$軸方向に$2$,$y$軸方向に$4$だけ移動する変換
九州工業大学 国立 九州工業大学 2011年 第2問
実数$a$と行列$A=\biggl( \begin{array}{cc}
a-2 & -2a \\
4a & -2a+2
\end{array} \biggr)$がある.$A$が表す座標平面上の点の移動に関する以下の二つの条件を考える.

条件1: 原点O以外のある点Pが$A$によってP自身に移される.
条件2: 原点O以外のある点Qが$A$によって線分OQ上のQ以外の点に移される.

以下の問いに答えよ.

(i) 条件1がみたされるとき,$a$の値を求めよ.
(ii) 条件1,条件2の両方がみたされるとき,$a$の値を求めよ.
(iii) $a$は$(ⅱ)$で求めた値とする.自然数$n$に対して,点R$_n$を次のように定める.
\begin{itemize}
R$_1$の座標を$(4,\ 5)$とする.
$A$によってR$_{n-1}$が移される先をR$_n \ (n \geqq 2)$とする.
\end{itemize}
R$_n$の座標を$(x_n,\ y_n)$とするとき,$\displaystyle x_n=\frac{12}{2^n}-2,\ y_n=\frac{16}{2^n}-3$であることを数学的帰納法を用いて証明せよ.
福井大学 国立 福井大学 2011年 第1問
以下の問いに答えよ.

(1)$\mathrm{O}$を原点とする座標平面上,直線$y=kx \ (k \text{は定数})$に関する対称移動を$f$で表す.また座標平面上の点$\mathrm{P}$に対して,直線$\mathrm{OP}$を$\mathrm{O}$を中心として角$\displaystyle \frac{\pi}{4}$だけ回転して得られる直線$\ell$に$\mathrm{P}$から下ろした垂線と$\ell$の交点を$\mathrm{Q}$とし,$\mathrm{P}$を$\mathrm{Q}$に移す移動を$g$で表す.ただし$\mathrm{O}$は$g$により$\mathrm{O}$自身に移動するものとする.$f,\ g$をこの順に続けて行って得られる移動(合成変換$g \circ f$)を表す行列を$A$とおくとき,$A$およびその逆行列$A^{-1}$を求めよ.
(2)2次の正方行列$M=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$に対して,$T(M)=a+d,\ D(M)=ad-bc$と定める.このとき以下の命題を証明せよ. \\
「すべての自然数$n$に対して$T(M^n)=\{T(M)\}^n$が成り立つことと,$D(M)=0$であることは,互いに同値である.」
会津大学 公立 会津大学 2011年 第2問
点P$(2,\ 1)$を点P自身に移し,点Q$(1,\ 2)$を点Q$_1(2,\ 4)$に移す1次変換$f$を表す行列を$A$とする.以下の問いに答えよ.ただし,$n$を自然数とする.

(1)$A$を求めよ.
(2)$f$により点Rが点$(4,\ 5)$に移されるとき,点Rの座標を求めよ.
(3)$A^n$で表される1次変換により点Qが移される点をQ$_n$とする.点Q$_n$の座標を求めよ.
(4)$A^n$を求めよ.
東北大学 国立 東北大学 2010年 第6問
$xy$平面において,原点を中心としP$(1,\ 0)$を頂点の1つとする正6角形を$X$とする.$A$を2次の正方行列とし,$X$の各頂点$(x,\ y)$に対して,行列$A$の表す移動
\[ \left( \begin{array}{c}
x^\prime \\
y^\prime
\end{array} \right) =A \left( \begin{array}{c}
x \\
y
\end{array} \right) \]
で得られる点$(x^\prime,\ y^\prime)$は$X$の辺上の点(頂点を含む)であるとする.以下の問いに答えよ.

(1)点Pが行列$A$の表す移動でP自身に移るとき,$X$の各頂点は$X$のいずれかの頂点に移ることを示せ.また,そのときの行列$A$を求めよ.
(2)点Pが行列$A$の表す移動で$X$のある頂点に移るとき,$X$の各頂点は$X$のいずれかの頂点に移ることを示せ.また,そのときの行列$A$を求めよ.
筑波大学 国立 筑波大学 2010年 第5問
$a$を実数とし,$A=\biggl( \begin{array}{cc}
a+1 & a \\
3 & a+2
\end{array} \biggr)$とする.2点P$(x,\ y)$,Q$(X,\ Y)$について
\[ \biggl( \begin{array}{c}
X \\
Y
\end{array} \biggr) = A \biggl( \begin{array}{c}
x \\
y
\end{array} \biggr) \]
が成り立つとき,Pは$A$によりQに移るという.

(1)原点以外の点で,$A$によりそれ自身に移るものが存在するとき,$a$を求めよ.
(2)次の条件$(*)$をみたす$a,\ k$を求めよ.
\[ (*) \quad \text{直線} \ell:y=kx+1 \text{上のすべての点は,} \ A \text{により} \ell \text{上の点に移る.} \]
(3)$(*)$をみたす$a,\ k$に対し,直線$\ell$上の点で,$A$によりそれ自身に移るものを求めよ.
富山大学 国立 富山大学 2010年 第3問
行列$A=\biggl( \begin{array}{cc}
a & b \\
-b & c
\end{array} \biggr)$で表される座標平面上の点の移動を考える.原点を通る直線$\ell$上のすべての点が$\ell$上の点に移されるとき,この移動によって$\ell$はそれ自身に移されるということにする.このとき,次の問いに答えよ.

(1)原点を通る直線で,この移動によってそれ自身に移されるものがちょうど2つ存在するための必要十分条件を,$a,\ b,\ c$を用いて表せ.
(2)$a,\ b,\ c$が(1)の条件をみたすとき,(1)の2つの直線は,直線$y=x$に関して対称であることを証明せよ.
愛媛大学 国立 愛媛大学 2010年 第7問
行列$\biggl( \begin{array}{cc}
a & b \\
6 & -1
\end{array} \biggr)$の表す点の移動を$f$とし,$\ell$を直線$y=2x-1$とする.また,$f$による$\ell$上の点の像はすべて$\ell$上にあり,$\ell$上のある点Pは$f$によってP自身に移されるとする.

(1)$a,\ b$の値を求めよ.
(2)Pの座標を求めよ.
(3)次の条件\maru{1},\maru{2},\maru{3}をすべてみたす直線$m$の方程式を求めよ.

\mon[\maru{1}] $m$はPを通る.
\mon[\maru{2}] $f$による$m$上の点の像はすべて$m$上にある.
\mon[\maru{3}] $m$は$\ell$と異なる.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2010年 第2問
$p \neq 0$として,$xy$座標平面上の直線$\ell$を$\ell:y=mx+p$,行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$の表す$1$次変換を$f$とする.このとき下記の問いに答えなさい.

(1)$f$により,直線$\ell$上の各点がすべて直線$\ell$上の点に移る場合,$c,\ d$を$m,\ a,\ b$を用いて表すと,$c=[$1$]$,$d=[$2$]$となる.
(2)上問$(1)$で$m=-1$,$a=2$,$b \neq 1$とする.$f$により,直線$\ell$上の点$\mathrm{R}$が$\mathrm{R}$自身に移るとき,$\mathrm{R}$の座標を$b,\ p$を用いて表すと,$\mathrm{R}=([$3$],\ [$4$])$となる.
兵庫県立大学 公立 兵庫県立大学 2010年 第2問
$2$次の正方行列$A=\left( \begin{array}{cc}
\cos \alpha & \displaystyle \frac{4}{3}\cos \beta \\
\displaystyle \frac{3}{4}\sin \alpha & \sin \beta
\end{array} \right)$が表す$1$次変換が座標平面における楕円$\displaystyle C:\frac{x^2}{4^2}+\frac{y^2}{3^2}=1$をそれ自身に移すとする.このとき次の問いに答えよ.

(1)$\alpha$を$\beta$の式で表せ.
(2)$A^3=E$(単位行列)となる行列$A$をすべて求めよ.
スポンサーリンク

「自身」とは・・・

 まだこのタグの説明は執筆されていません。