タグ「自然数」の検索結果

99ページ目:全1172問中981問~990問を表示)
学習院大学 私立 学習院大学 2011年 第3問
$n$を自然数とする.

(1)不等式
\[ \left( 1+\frac{2}{n} \right)^n \geqq 3 \]
が成り立つことを証明せよ.
(2)不等式
\[ (n+1)^{n-1}(n+2)^n \geqq 3^n(n!)^2 \]
が成り立つことを数学的帰納法により証明せよ.
関西大学 私立 関西大学 2011年 第2問
$a,\ b$を実数の定数とし,$3$つの行列
\[ A=\left( \begin{array}{rr}
3 & -2 \\
a & 1
\end{array} \right),\quad R=\frac{1}{2} \left( \begin{array}{rr}
5 & -4 \\
6 & -5
\end{array} \right),\quad Q=\left( \begin{array}{cc}
\displaystyle \frac{1}{2} & 0 \\
0 & b
\end{array} \right) \]
は$AR=QA$を満たしている.次の$[ ]$をうめよ.

$AR=QA$を満たす$a$の値は$2$つある.そのうち,$A$が逆行列をもたないのは,$a=[$①$]$のときであり,このとき,$b=[$②$]$である.$A$が逆行列$A^{-1}$をもつのは,$a=[$③$]$のときであり,このとき,$A^{-1}=[$④$]$,$b=[$⑤$]$である.
$n$を$2$以上の自然数として,
\[ S_n=A+AR+AR^2+\cdots +AR^{n-1} \]
とおく.$AR=QA$であるから,$S_n$は実数$x_n,\ y_n$を用いて
\[ S_n=\left( \begin{array}{cc}
x_n & 0 \\
0 & y_n
\end{array} \right) A \]
と表される.
$a=[$③$]$のときは,$x_n=[$⑥$]$,$y_n=[$④chi$]$である.したがって,$E$を単位行列として,
\[ E+R+R^2+\cdots +R^{n-1}=\left( \begin{array}{cc}
p_n & q_n \\
r_n & s_n
\end{array} \right) \]
とおくと,$\displaystyle \lim_{n \to \infty}p_n=[$\maruhachi$]$である.
関西大学 私立 関西大学 2011年 第4問
次の$[ ]$をうめよ.

(1)実数$x,\ y,\ z$が$\displaystyle \frac{x+y}{5}=\frac{y+2z}{4}=\frac{z+3x}{10}$を満たしている.$x^3+y^3+z^3=-36$が成り立つのは,
\[ \frac{x+y}{5}=\frac{y+2z}{4}=\frac{z+3x}{10} \]
の値が$[$①$]$のときである.

(2)$\displaystyle x-y=\frac{\pi}{3}$であるとき,$\displaystyle \frac{\sin x-\sin y}{\cos x+\cos y}$の値は$[$②$]$である.

(3)座標空間における$2$点$\mathrm{A}(0,\ 1,\ 1)$,$\mathrm{B}(1,\ 3,\ 0)$を通る直線$\ell$を考える.$\ell$上の点$\mathrm{P}$において,原点$\mathrm{O}$と$\mathrm{P}$を結ぶ直線が直線$\ell$と垂直に交わるとき,点$\mathrm{P}$の$y$座標は$[$③$]$である.
(4)連立方程式$\left\{ \begin{array}{l}
4(\log_2x)^2+2 \log_2y=1 \\
x^2y=2
\end{array} \right.$を解くと,$x=[$④$]$,$y=[$⑤$]$である.
(5)$2$桁の自然数を$N$とし,$N$の$1$の位と$10$の位の$2$つの数の和を$T$とする.$\displaystyle \frac{N}{T}$の最小値は$[$⑥$]$である.
広島修道大学 私立 広島修道大学 2011年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)連立不等式
\[ \left\{ \begin{array}{l}
x-2>0 \\
2x-6 \leqq 0
\end{array} \right. \]
の解は$[$1$]$である.
(2)$x^3-4x^2+5x+2$を$x-4$で割った余りは$[$2$]$である.
(3)$f(x)=x^2+ax+b,\ g(x)=x^2+2ax+b$とする.放物線$y=g(x)$の頂点の座標が$\displaystyle \left( \frac{8}{3},\ \frac{26}{9} \right)$であるとき,$a=[$3$]$,$b=[$4$]$である.また,$2$つの放物線$y=f(x)$,$y=g(x)$および直線$x=\sqrt{3}$で囲まれた図形の面積は$[$5$]$である.
(4)$\triangle \mathrm{ABC}$において$\displaystyle \angle \mathrm{B}=\frac{\pi}{12}$,$\mathrm{BC}=1$,$\mathrm{AB}=2$のとき,$\mathrm{AC}^2=[$6$]$,$\sin^2 A=[$7$]$である.
(5)$2$次方程式$3x^2+2x+15=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\alpha^2+\beta^2=[$8$]$,$\displaystyle \frac{\alpha+i \beta}{\alpha-i \beta}-\frac{\alpha-i \beta}{\alpha+i \beta}=[$9$]$である.
(6)$1$から$15$までの異なる$15$個の自然数の中から,$4$個の異なる数をとって組を作る.このとき,偶数だけからなる組は$[$10$]$通りあり,偶数を少なくとも$1$個含む組は$[$11$]$通りある.
北海道文教大学 私立 北海道文教大学 2011年 第1問
次の問いに答えなさい.

(1)$1$以上$200$以下の自然数の中で,$2$または$5$で割り切れる数はいくつありますか.その個数を求めなさい.
(2)次の式を因数分解しなさい.
\[ 3(2x-3)^2-4(2x+1)+12 \]
(3)次の不等式を解きなさい.
\[ |x-2|>3x \]
(4)$\displaystyle x=\frac{1}{\sqrt{7}-\sqrt{3}},\ y=\frac{1}{\sqrt{7}+\sqrt{3}}$のとき,次の式の値を求めなさい.


(i) $x^2-y^2$
(ii) $x^3+y^3$

(5)$7$個の整数$1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7$から異なる$5$個を取り出して$1$列に並べるとき,次の問いに答えなさい.

(i) $5$桁の整数は全部で何個できるか.その個数を求めなさい.
(ii) $(1)$で求めた$5$桁の整数のうち,奇数は何個できるか.その個数を求めなさい.

(6)$\displaystyle \left( 3x^2-\frac{1}{2x} \right)^5$の展開式における$x^4$の係数を求めなさい.
愛知工業大学 私立 愛知工業大学 2011年 第1問
次の$[ ]$を適当に補え.

(1)連続する$4$つの自然数を小さい順に$a,\ b,\ c,\ d$とする.$\displaystyle \frac{ac}{bd}=\frac{5}{8}$のとき,$a=[ ]$である.
(2)袋の中に$0$と書かれたカードが$1$枚,$1$と書かれたカードが$2$枚,$2$と書かれたカードが$3$枚,合わせて$6$枚のカードが入っている.この袋から$1$枚ずつ$4$枚のカードを取り出し,取り出した順に左からカードの数字を書き並べたとき,$2011$となる確率は$[ ]$である.また,$1$枚カードを取り出し,カードを袋に戻すことを$4$回くり返した場合,取り出した順に左からカードの数字を書き並べたとき,$2011$となる確率は$[ ]$である.
(3)数列$\{a_n\}$は関係式$a_1=1$,$\displaystyle 2^{a_{n+1}}=\frac{4^{a_n}}{\sqrt{2}} (n=1,\ 2,\ 3,\ \cdots)$をみたすとする.このとき,$a_3=[ ]$であり,$a_n=[ ]$である.
(4)$\displaystyle \frac{\pi}{2}<\theta<\pi$において,$\tan \theta=-2$のとき,$\cos^2 \theta=[ ]$,$\displaystyle \sin \left( 2\theta+\frac{\pi}{4} \right)=[ ]$である.
(5)$2$次方程式$x^2-kx+9=0$が実数解をもつような実数$k$の範囲は$[ ]$である.このとき,その実数解を$\alpha,\ \beta$とすると,$(\alpha+1)^2+(\beta+1)^2$の最小値は$[ ]$である.
(6)整式$x^3+3x$を$x^2+1$で割った商は$[ ]$であり,余りは$[ ]$である.また,$\displaystyle \int_0^2 \frac{x^3+3x}{x^2+1} \, dx=[ ]$である.
愛知工業大学 私立 愛知工業大学 2011年 第4問
次の$[ ]$を適当に補え.

(1)$2$つの自然数$x,\ y (x<y)$の積が$588$で,最大公約数が$7$であるとき,この$2$つの自然数の組$(x,\ y)$は$(x,\ y)=[ ]$である.
(2)$xy$平面において,$2$次関数$y=f(x)$のグラフが点$(2,\ 5)$を頂点とし,点$(-1,\ -4)$を通る放物線であるとき,$f(x)=[ ]$である.また,このグラフを$x$軸方向に$[ ]$,$y$軸方向に$[ ]$だけ平行移動すれば$y=-x^2+10x-21$のグラフになる.
(3)円に内接する四角形$\mathrm{ABCD}$において,$\angle \mathrm{A}={60}^\circ$,$\mathrm{AB}=4$,$\mathrm{BC}=2$,$\mathrm{DA}=3$のとき,$\mathrm{BD}=[ ]$,$\mathrm{CD}=[ ]$である.
(4)全体集合$U=\{1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9,\ 10\}$の部分集合$A=\{1,\ 2,\ 3,\ 4,\ 8,\ 9\}$,$B=\{2,\ 4,\ m\}$($m$は$2,\ 4$以外の$U$の要素)に対して,$A \cap B=\{2,\ 4\}$となるのは$m=[ ]$のときであり,$\overline{A \cup B}=\{6,\ 7,\ 10\}$となるのは$m=[ ]$のときである.ただし,$\overline{A \cup B}$は$U$における$A \cup B$の補集合である.
(5)$\displaystyle \left( x-\frac{1}{2x^2} \right)^{12}$の展開式において,$x^3$の係数は$[ ]$であり,定数項は$[ ]$である.
中央大学 私立 中央大学 2011年 第1問
次の各問いに答えよ.

(1)$xy=100$,$x>y$をみたす自然数$x,\ y$の組み合わせは何通りあるか.
(2)次の値を求めよ.
\[ \sum_{k=1}^{10} (2k^2-3k+5) \]
(3)$k$が定数のとき,$y=x^2-2kx+2k^2+3k-2$は放物線を表す.定数$k$をいろいろ変化させるとき,放物線の頂点はどのような曲線上を動いていくか.
(4)半径が$2t+1$の球の体積を$V(t)$とする.$V(t)$を$t$で微分した導関数を求めよ.
(5)$\log_{10}x=0.8$,$\log_{10}y=0.3$のとき,$\log_{10}x^2y^3$の値を求めよ.
(6)$1$枚の硬貨を$5$回投げたとき,表が$3$回出る確率を求めよ.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2011年 第3問
数列$\{a_n\}$に対して初項$a_1$から第$n$項$a_n$までの和が,
\[ S_n=n^3-16n^2+8n+20 \quad (n=1,\ 2,\ 3,\ \cdots) \]
で表されるものとする.以下の問いに答えなさい.

(1)このとき$a_1=[$1$]$,$a_2=[$2$]$である.また,$a_n$の値が最小となるのは第$[$3$]$項であり,そのときの$a_n$の値は$a_n=[$4$]$である.
(2)$a_n$の値が負となる自然数$n$を,小さい方から順にすべて書きなさい.
関西学院大学 私立 関西学院大学 2011年 第1問
次の文章中の$[ ]$に適する式または数値を記入せよ.

(1)$m$を実数とするとき,$2$つの$2$次方程式
$2x^2+8x+2m=0$ $\cdots\cdots①$
$x^2+mx+2m-4=0$ $\cdots\cdots②$
が共通の解をもつのは,$m=[$*$]$または$m=[$**$]$のときである.ただし,$[$*$]>[$**$]$とする.$m=[$*$]$のとき,$①$と$②$の共通の解は$x=[ ]$であり,$m=[$**$]$のとき,$①$と$②$の共通の解は$x=[ ]$である.
(2)座標平面上に点$\mathrm{P}$がある.サイコロを投げて,偶数の目がでたら$\mathrm{P}$は$x$軸の正の方向に$1$動き,$1$または$5$の目がでたら$y$軸の正の方向に$1$動き,$3$の目がでたときには動かないとする.最初$\mathrm{P}$が原点にあったとする.サイコロを$5$回投げた後,$\mathrm{P}$が座標$(4,\ 1)$にある確率は$[ ]$,$(3,\ 1)$にある確率は$[ ]$,$(2,\ 1)$にある確率は$[ ]$である.また,$n$を$3$以上の自然数とし,サイコロを$n$回投げた後,$\mathrm{P}$が$(n-3,\ 1)$にある確率は$[ ]$である.
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。