タグ「自然数」の検索結果

96ページ目:全1172問中951問~960問を表示)
愛媛大学 国立 愛媛大学 2011年 第5問
関数$f(x)=\cos x-x \sin x,\ g_n(x)=(x+n \pi)\sin x-\cos x \ (n=1,\ 2,\ 3,\ \cdots)$について,次の問いに答えよ.ただし,必要があれば,$\displaystyle 0<x<\frac{\pi}{2}$を満たすすべての$x$について$\tan x>x$が成り立つことを用いてよい.

(1)すべての自然数$n$,実数$x$に対して$g_n(x)=(-1)^{n+1}f(x+n \pi)$が成り立つことを示せ.
(2)自然数$n$に対して,方程式$g_n(x)=0$は$0 \leqq x \leqq \pi$の範囲においてただ$1$つの解をもつことを示せ.
(3)(2)におけるただ$1$つの解を$x_n$とする.$x_n$は$\displaystyle 0<x_n<\frac{1}{n\pi}$を満たすことを示せ.
(4)$y_n=n\pi+x_n \ (n=1,\ 2,\ 3,\ \cdots)$とおく.定積分
\[ S_n=\int_{y_n}^{y_{n+1}}|f(x)| \, dx \]
を,$n,\ x_n$および$x_{n+1}$を用いて表せ.
(5)極限$\displaystyle \lim_{n \to \infty}\frac{S_n}{n}$を求めよ.
愛媛大学 国立 愛媛大学 2011年 第3問
単位行列$E$と行列$\displaystyle A=\frac{1}{4} \left( \begin{array}{cc}
1 & -\sqrt{3} \\
-\sqrt{3} & -1
\end{array} \right)$について,次の問いに答えよ.

(1)$A^2=pE+qA$となる実数$p,\ q$の値を求めよ.
(2)自然数$n$に対して,関係式
\[ E+A+A^2+\cdots +A^{2n-1}+A^{2n}=x_nE+y_nA \]
をみたす実数$x_n,\ y_n$を,$n$を用いて表せ.
(3)極限値$\displaystyle \lim_{n \to \infty}x_n,\ \lim_{n \to \infty}y_n$を求めよ.
(4)実数$x,\ y$をそれぞれ$\displaystyle x=\lim_{n \to \infty}x_n,\ y=\lim_{n \to \infty}y_n$で定めるとき
\[ xE+yA=(E-A)^{-1} \]
であることを示せ.
愛媛大学 国立 愛媛大学 2011年 第4問
自然数$n$を定数として,さいころを投げる次の競技を行う.この競技は,{\bf 試行}$1$と{\bf 試行}$2$からなる.競技者は,はじめに{\bf 試行}$1$を行う.
\begin{screen}

\mon[{\bf 試行}$1$] さいころを投げ,出た目の数を$X$とする.$X$の値に応じて次の手順に従う.
\mon[$\bullet$] $X=1,\ 2,\ 3,\ 4,\ 5$の場合
$X$の値を得点として競技を終了する.
\mon[$\bullet$] $X=6$の場合
もし$n=1$ならば,$7$を得点として競技を終了する.
(★) \quad もし$n \geqq 2$ならば,{\bf 試行}$2$に進む.

\end{screen}
\begin{screen}

\mon[{\bf 試行}$2$] 競技者はさいころを投げる.
(★★) \quad 出た目の数を$X$とする.
$X$の値に応じて次の手順に従う.
\mon[$\bullet$] $X=1,\ 2,\ 3,\ 4,\ 5$の場合
次のように定めた$P$を得点として競技を終了する.
\[ P=\left\{ \begin{array}{rl}
-1 & (X=1) \\
7 & (X=2,\ 3,\ 4) \\
13 & (X=5)
\end{array} \right. \]
\mon[$\bullet$] $X=6$の場合
もし競技開始から現時点までにさいころを投げた回数が$n$に等しいならば,$7$を得点として競技を終了する.
そうでないならば,続けてさいころを投げ,(★★)にもどる.

\end{screen}
以下の問いに答えよ.

(1)$n=1$として,{\bf 試行}$1$のみを行う.得点の期待値を求めよ.
(2)$n=4$とする.得点の期待値を求めよ.
(3)$n=30$とする.{\bf 試行}$1$を行い$X=6$になった.このとき,{\bf 試行}$1$の規則(★)を変更して,競技者は

\mon[(a)] 得点$7$を得て競技をただちに終了するか
\mon[(b)] 終了せずに{\bf 試行}$2$に進むか

どちらか一方を選択できるとする.どちらの選択をする方が得点の期待値が大きいか.
早稲田大学 私立 早稲田大学 2011年 第5問
$a$を$0$でない実数とする.$2$つの異なる曲線
\[ C_1: y=x^2-2x+5,\quad C_2: y=ax^2+(1-3a)x+\frac{13}{8}\]
は,ある共有点$\mathrm{P}$で共通な接線$\ell$をもつ.さらに,曲線$C_2$上の点$\mathrm{Q}$において$\ell$以外の接線を,$\ell$と点$\mathrm{R}$で直交するように引く.このとき$a$の値は$\displaystyle \frac{[ソ]}{[タ]}$であり,共通接線$\ell$の方程式は$[チ]x-[ツ]y+[テ]=0$である.また,曲線$C_2$は$\triangle \mathrm{PQR}$の面積を$1:[ト]$に分ける.ただし,$[タ]$から$[ト]$はできる限り小さい自然数で答えること.
早稲田大学 私立 早稲田大学 2011年 第7問
座標平面上の点$(x,y)$の両座標とも整数のとき,その点を格子点という.本問では,「領域内」とはその領域の内部および境界線を含むものとする.

(1)不等式$|x|+2 |y| \leqq 4$の表す領域を$D$とする.領域$D$内に格子点は$[ノ]$個ある.
(2)$n$を自然数として,不等式$|x|+2 |y| \leqq 2n$の表す領域を$F$とする.領域$F$内の格子点の総数は
$\left( [ハ]n^2+[ヒ]n+[フ] \right)$個である.
早稲田大学 私立 早稲田大学 2011年 第3問
$f(x)=\displaystyle\frac{\log x}{x}$とする.以下の問に答えよ.

(1)$y=f(x)$のグラフの概形を次の点に注意して描け:$f(x)$の増減,グラフの凹凸,$x$→$+0$,$x$→$\infty$のときの$f(x)$の挙動.
(2)$n$を自然数とする.$k=1,\ 2,\ \cdots,\ n$に対して$x$が$\displaystyle e^{\frac{k-1}{n}} \leqq x \leqq e^{\frac{k}{n}}$を動くときの$f(x)$の最大値を$M_k$,最小値を$m_k$とし,
\[ A_n = \sum_{k=1}^n M_k(e^{\frac{k}{n}}- e^{\frac{k-1}{n}}) \]
\[ B_n = \sum_{k=1}^n m_k(e^{\frac{k}{n}}- e^{\frac{k-1}{n}}) \]
とおく.$A_n,\ B_n$を求めよ.
(3)$\displaystyle\lim_{n \to \infty} A_n$および$\displaystyle\lim_{n \to \infty} B_n$求めよ.
(4)各$n$に対して$\displaystyle B_n < \int_1^e f(x)\, dx < A_n$であることを示せ.
早稲田大学 私立 早稲田大学 2011年 第2問
関数$\displaystyle f(x)=x^3-3x^2-6x-\frac{6}{x}-\frac{3}{x^2}+\frac{1}{x^3}$の定義域は$x>0$とする.
\[ x=\frac{[オ]\text{±}\sqrt{[カ]}}{[キ]} \text{のとき,関数} f(x) \text{は最小値}[ク]\text{をとる.} \]
ただし,$[キ]$はできるだけ小さな自然数で答えること.
早稲田大学 私立 早稲田大学 2011年 第2問
次の問に答えよ.

(1)$a,\ b$は整数で,$2$次方程式
\[ x^2 + ax + b= 0 \dotnum{A} \]
が異なる$2$つの実数解$\alpha,\ \beta$をもつとする.このとき,$\alpha,\ \beta$はともに整数であるか,ともに無理数であるかのいずれかであることを証明する.以下の問に答え,証明を完成させよ.\\
\quad まず,$b=0$のときは,$x^2+ax=0$であるから\maru{A}は整数解$0,\ -a$をもつ.以下では$ b \neq 0$とする.\\
\quad 解と係数の関係より,$\alpha + \beta = -a,\ \alpha\beta = b$であり,これらは整数である.有理数と無理数の和は有理数でなく,整数と整数以外の有理数の和は整数ではないという事実を用いると,$\alpha,\ \beta$がともに整数以外の有理数であるとして矛盾を導けばよい.\\
\quad そこで,$\alpha,\ \beta$が2以上の整数$p_1,\ p_2$と0でない整数$q_1,\ q_2$を用いて,既約分数
\[ \alpha = \frac{q_1}{p_1},\quad \beta = \frac{q_2}{p_2} \]
で表されると仮定する.ここに,$\displaystyle\frac{q_i}{p_i}\ (i=1,\ 2)$が既約分数であるとは,$p_i$と$|q_i|$の最大公約数が1であることをいう.このとき,
\[ \alpha + \beta = \frac{p_2q_1+p_1q_2}{p_1p_2} \cdots\cdots① \]
\[ \alpha\beta = \frac{q_1q_2}{p_1p_2} \cdots\cdots② \]
である.

(i) $①$において,$\alpha+\beta$が整数であることを用いて,$p_1=p_2$であることを示せ.
(ii) $②$において,$\alpha\beta$が整数であることと問\maru{1}の結果から,既約分数の仮定に矛盾することを示せ.

$(ⅱ)$の結果から,$\alpha,\ \beta$はともに整数であるか,ともに無理数であることが示された.
(2)$c$が自然数のとき,$\sqrt{c}$は自然数であるか無理数であることを証明せよ.
早稲田大学 私立 早稲田大学 2011年 第3問
$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B} \displaystyle \biggl( 0,\ \frac{1}{2},\ 0 \biggr)$,$\mathrm{C} \displaystyle \biggl( 0,\ 0,\ \frac{1}{3} \biggr)$の定める平面を$\alpha$とする.点$\mathrm{P}$を$\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}$を満たすようにとり,点$\mathrm{P}$から平面$\alpha$に垂線$\mathrm{PQ}$を下ろす.このとき,
\[ \overrightarrow{\mathrm{PQ}}=\frac{[ケ] \overrightarrow{\mathrm{OA}}+[コ] \overrightarrow{\mathrm{OB}}+[サ] \overrightarrow{\mathrm{OC}}}{[シ]} \]
となる.ただし,$[シ]$はできるだけ小さな自然数で答えること.
上智大学 私立 上智大学 2011年 第1問
$a,\ b,\ c$は整数で,$a \geqq 1,\ b \geqq 0,\ c \geqq 0$とする.$x$の2次式$P(x)=ax^2+bx+c$を考える.

(1)$P(1)=2$を満たす$P(x)$は全部で[ア]個存在する.
(2)条件 \[ \lceil P(n)=5 \text{を満たす自然数}n\text{が存在する}\rfloor \]
を満たす$P(x)$は全部で[イ]個存在する.
このような$P(x)$のうち,$P(3)=17$を満たすものは
\[ P(x) = [ウ]x^2+[エ]x+[オ] \]
である.
(3)条件
\[ \lceil P(n)=3 \text{を満たす自然数}n\text{が存在し,} \]
\[ \qquad \qquad \text{かつ,任意の自然数}m\text{に対して}P(m)\text{が奇数である}\rfloor \]
を満たす$P(x)$のうち,$a$が最大のものは
\[ P(x) = [カ]x^2+[キ]x+[ク] \]
であり,$a$が最小のものは
\[ P(x) = [ケ]x^2+[コ]x+[サ] \]
である.
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。