タグ「自然数」の検索結果

95ページ目:全1172問中941問~950問を表示)
滋賀医科大学 国立 滋賀医科大学 2011年 第2問
$a$を正の実数とし,実数$x$についての関数$f(x)=(x^3+ax)e^{-\frac{x^2}{a}}$を考える.ただし任意の自然数$n$に対して$\displaystyle \lim_{t \to \infty}t^n e^{-t}=0$であることを使ってよい.

(1)$y=f(x)$のグラフの概形を,極値および変曲点を調べて描け.
(2)$\displaystyle g(x)=\int_0^x f(t) \, dt$を求めよ.
(3)$f(x)=g(x)$となる実数$x$はいくつあるか.
岐阜大学 国立 岐阜大学 2011年 第5問
$a,\ b,\ c,\ d$を実数の定数とする.座標平面上の点$(2,\ 1)$を点$(5,\ 2)$に移す1次変換を表す行列を
\[ A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right) \]
とする.以下の問に答えよ.

(1)$A$が逆行列をもつための必要十分条件を$a$と$c$を用いて表せ.
(2)次の式を満たす$A$を求めよ.
\[ A^2=\left( \begin{array}{cc}
\displaystyle\frac{25}{4} & 0 \\
\displaystyle\frac{5}{2} & 0
\end{array} \right) \]
(3)$n$を自然数とする.(2)で求めた$A$について
\[ -\frac{2}{5}A+\left( -\frac{2}{5} \right)^2A^2+\left( -\frac{2}{5}\right)^3A^3+\cdots +\left( -\frac{2}{5} \right)^n A^n \]
を求めよ.
長崎大学 国立 長崎大学 2011年 第8問
曲線$y=\log x$の接線は常にこの曲線の上側にあることを利用して,次の問いに答えよ.以下,$k$は自然数とする.

(1)点$\mathrm{A}_k(k,\ 0)$を通り$x$軸に垂直な直線と曲線$y=\log x$との交点を${\mathrm{A}_k}^\prime$とし,${\mathrm{A}_k}^\prime$におけるこの曲線の接線を$\ell_k$とする.また,$k \geqq 2$のとき,$\displaystyle \mathrm{B}_k \left( k-\frac{1}{2},\ 0 \right)$,$\displaystyle \mathrm{C}_k \left( k+\frac{1}{2},\ 0 \right)$を通り$x$軸に垂直な直線と接線$\ell_k$との交点をそれぞれ${\mathrm{B}_k}^\prime$,${\mathrm{C}_k}^\prime$とする.四角形$\mathrm{B}_k \mathrm{C}_k {\mathrm{C}_k}^\prime {\mathrm{B}_k}^\prime$の面積を求めよ.
(2)次の2つの値の大小を比較せよ.

(i) $\log k$と$\displaystyle \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} \log x \, dx \quad$(ただし,$k \geqq 2$)
(ii) $\displaystyle \frac{\log k+\log (k+1)}{2}$と$\displaystyle \int_k^{k+1} \log x \, dx \quad$(ただし,$k \geqq 1$)

(3)$\displaystyle a_n=\log (n!)-\frac{1}{2}\log n$とおくと,2以上の自然数$n$について,次の不等式が成り立つことを示せ.
\[ \int_{\frac{3}{2}}^n \log x \, dx<a_n<\int_1^n \log x \, dx \]
(4)2以上の自然数$n$について
\[ \left\{
\begin{array}{l}
U_n=\left( n+\displaystyle\frac{1}{2} \right) \log n-n+\displaystyle\frac{3}{2} \left( 1-\log \displaystyle\frac{3}{2} \right) \\
V_n=\left( n+\displaystyle\frac{1}{2} \right) \log n-n+1
\end{array}
\right. \]
とおくとき,次の不等式を示せ.
\[ U_n<\log (n!)<V_n \]
九州工業大学 国立 九州工業大学 2011年 第2問
実数$\theta$に対して,行列$A$を$A=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$とする.また,$n$を自然数とし,$A$の$n$乗を$A^n$で表す.次に答えよ.

(1)数学的帰納法により,すべての自然数$n$に対して
\[ A^n=\left( \begin{array}{cc}
\cos n\theta & -\sin n\theta \\
\sin n\theta & \cos n\theta
\end{array} \right) \]
が成立することを示せ.
(2)$\displaystyle \theta=\frac{\pi}{12}$とする.ある自然数$n$に対しては,行列$A^n$によって曲線$\displaystyle y=-\frac{1}{2x}$上の点が常に曲線$x^2-y^2=-1$上の点に移される.このような自然数$n$の最小値を求めよ.
福岡教育大学 国立 福岡教育大学 2011年 第4問
$n$を$2$以上の自然数とし,$x$の関数$f(x),\ g(x)$を
\[ f(x)=x^n \log 2x,\quad g(x)=\log 2x \]
とする.ただし,対数は自然対数とする.次の問いに答えよ.

(1)$f(x)$の極値を求めよ.
(2)曲線$y=f(x)$の変曲点を求めよ.
(3)$2$つの曲線$y=f(x)$と$y=g(x)$で囲まれた図形の面積$S_n$を求めよ.
(4)$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
愛媛大学 国立 愛媛大学 2011年 第2問
単位行列$E$と行列$\displaystyle A=\frac{1}{4} \left( \begin{array}{cc}
1 & -\sqrt{3} \\
-\sqrt{3} & -1
\end{array} \right)$について,次の問いに答えよ.

(1)$A^2=pE+qA$となる実数$p,\ q$の値を求めよ.
(2)自然数$n$に対して,関係式
\[ E+A+A^2+\cdots +A^{2n-1}+A^{2n}=x_nE+y_nA \]
をみたす実数$x_n,\ y_n$を,$n$を用いて表せ.
(3)極限値$\displaystyle \lim_{n \to \infty}x_n,\ \lim_{n \to \infty}y_n$を求めよ.
(4)実数$x,\ y$をそれぞれ$\displaystyle x=\lim_{n \to \infty}x_n,\ y=\lim_{n \to \infty}y_n$で定めるとき
\[ xE+yA=(E-A)^{-1} \]
であることを示せ.
愛媛大学 国立 愛媛大学 2011年 第3問
自然数$n$を定数として,さいころを投げる次の競技を行う.この競技は,{\bf 試行}$1$と{\bf 試行}$2$からなる.競技者は,はじめに{\bf 試行}$1$を行う.
\begin{screen}

\mon[{\bf 試行}$1$] さいころを投げ,出た目の数を$X$とする.$X$の値に応じて次の手順に従う.
\mon[$\bullet$] $X=1,\ 2,\ 3,\ 4,\ 5$の場合
$X$の値を得点として競技を終了する.
\mon[$\bullet$] $X=6$の場合
もし$n=1$ならば,$7$を得点として競技を終了する.
(★) \quad もし$n \geqq 2$ならば,{\bf 試行}$2$に進む.

\end{screen}
\begin{screen}

\mon[{\bf 試行}$2$] 競技者はさいころを投げる.
(★★) \quad 出た目の数を$X$とする.
$X$の値に応じて次の手順に従う.
\mon[$\bullet$] $X=1,\ 2,\ 3,\ 4,\ 5$の場合
次のように定めた$P$を得点として競技を終了する.
\[ P=\left\{ \begin{array}{rl}
-1 & (X=1) \\
7 & (X=2,\ 3,\ 4) \\
13 & (X=5)
\end{array} \right. \]
\mon[$\bullet$] $X=6$の場合
もし競技開始から現時点までにさいころを投げた回数が$n$に等しいならば,$7$を得点として競技を終了する.
そうでないならば,続けてさいころを投げ,(★★)にもどる.

\end{screen}
以下の問いに答えよ.

(1)$n=1$として,{\bf 試行}$1$のみを行う.得点の期待値を求めよ.
(2)$n=4$とする.得点の期待値を求めよ.
(3)$n=30$とする.{\bf 試行}$1$を行い$X=6$になった.このとき,{\bf 試行}$1$の規則(★)を変更して,競技者は

\mon[(a)] 得点$7$を得て競技をただちに終了するか
\mon[(b)] 終了せずに{\bf 試行}$2$に進むか

どちらか一方を選択できるとする.どちらの選択をする方が得点の期待値が大きいか.
山梨大学 国立 山梨大学 2011年 第5問
放物線$C:y=x^2$上の点$\mathrm{P}_1$の座標を$(1,\ 1)$とする.定数$k \ (0<k<1)$に対して,$\mathrm{P}_1$と点$(0,\ k)$を通る直線と$C$との交点を$\mathrm{P}_2$とする.ただし,$\mathrm{P}_2$は$\mathrm{P}_1$とは異なる点とする.$\mathrm{P}_2$と点$(0,\ k^2)$を通る直線と$C$との交点を$\mathrm{P}_3$とする.ただし,$\mathrm{P}_3$は$\mathrm{P}_2$とは異なる点とする.以下同様にして,自然数$n$に対し,$\mathrm{P}_n$と点$(0,\ k^n)$を通る直線と$C$との交点を$\mathrm{P}_{n+1}$とする.ただし,$\mathrm{P}_{n+1}$は$\mathrm{P}_n$とは異なる点とする.

(1)$\mathrm{P}_{2n-1}$および$\mathrm{P}_{2n}$の座標を$n$と$k$を用いて表せ.
(2)線分$\mathrm{P}_n \mathrm{P}_{n+1}$の長さを$l_n$とする.${l_{2n-1}}^2$および${l_{2n}}^2$を$n$と$k$を用いて表せ.
(3)$\displaystyle k=\frac{1}{2}$のとき,無限級数${l_1}^2+{l_2}^2+\cdots +{l_n}^2+\cdots$の和を求めよ.
大分大学 国立 大分大学 2011年 第1問
次の問いに答えよ.

(1)正弦定理の証明をせよ.ただし,鋭角三角形の場合だけの証明でよい.
(2)実数$x_i,\ y_i,\ i=1,\ 2,\ \cdots,\ n$に対して次の不等式を証明せよ.ただし,$n$は自然数である.
\[ \sum_{i=1}^n x_iy_i \leqq \sqrt{\sum_{i=1}^n {x_i}^2} \sqrt{\sum_{i=1}^n {y_i}^2} \]
愛媛大学 国立 愛媛大学 2011年 第2問
次の問いに答えよ.

(1)関数$y=x^2-3x+7-3 |x-2|$のグラフをかけ.
(2)$a>0$とする.関数$y=(a-x)\sqrt{x} \ (0<x<a)$の最大値が$2$であるとき,$a$の値を求めよ.
(3)自然数$n$について,等式
\[ 1+2x+3x^2+\cdots +nx^{n-1}=\frac{1-(n+1)x^n+nx^{n+1}}{(1-x)^2} \]
が成り立つことを,数学的帰納法を用いて示せ.ただし,$x \neq 1$とする.
(4)$i$を虚数単位とする.等式$\displaystyle (2+3i)(5a-2i)=\frac{b}{1-i}$を満たす実数$a$と実数$b$の値を求めよ.
(5)次の不定積分を求めよ.
\[ (ⅰ) \int \frac{1}{\tan 4x} \, dx \qquad (ⅱ) \int x \sqrt{1-5x} \, dx \]
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。