タグ「自然数」の検索結果

89ページ目:全1172問中881問~890問を表示)
大阪大学 国立 大阪大学 2011年 第1問
$a$を自然数とする.$\mathrm{O}$を原点とする座標平面上で行列$A=\left( \begin{array}{cc}
a & -1 \\
1 & a
\end{array} \right)$の表す$1$次変換を$f$とする.

(1)$r>0$および$0 \leqq \theta < 2\pi$を用いて$A=\left( \begin{array}{cc}
r \cos \theta & -r \sin \theta \\
r \sin \theta & r \cos \theta
\end{array} \right)$と表すとき,$r,\ \cos \theta,\ \sin \theta$を$a$で表せ.
(2)点$\mathrm{Q}(1,\ 0)$に対し,点$\mathrm{Q}_n (n = 1,\ 2,\ 3)$を
\[ \mathrm{Q}_1 = \mathrm{Q},\quad \mathrm{Q}_{n+1} = f(\mathrm{Q}_n) \]
で定める.$\triangle \mathrm{OQ}_n \mathrm{Q}_{n+1}$の面積$S(n)$を$a$と$n$を用いて表せ.
(3)$f$によって点$(2,\ 7)$に移されるもとの点$\mathrm{P}$の$x$座標の小数第一位を四捨五入して得られる近似値が$2$であるという.自然数$a$の値を求めよ.またこのとき$S(n)>{10}^{10}$となる最小の$n$の値を求めよ.ただし$0.3 < \log_{10}2 < 0.31$を用いてよい.
広島大学 国立 広島大学 2011年 第2問
次の問いに答えよ.

(1)$\displaystyle \log_2 3 = \frac{m}{n}$を満たす自然数$m,\ n$は存在しないことを証明せよ.
(2)$p,\ q$を異なる自然数とするとき,$p \log_2 3$と$q \log_2 3$の小数部分は等しくないことを証明せよ.
(3)$\log_2 3$の値の小数第1位を求めよ.
静岡大学 国立 静岡大学 2011年 第2問
自然数$a,\ b$に対して,$a = bq+r,\ 0 \leqq r \leqq b-1$を満たす整数$q,\ r$がただ1組存在する.このとき$q$は$a$を$b$で割った商,$r$は$a$を$b$で割った余りという.自然数$a_0,\ a_1$が与えられたとき,数列$\{a_n\},\ \{q_n\}$は次の性質を満たすものとする.

\mon[(i)] $q_n$は$a_{n-1}$を$a_n$で割った商
\mon[(ii)] $\biggl( \begin{array}{c}
a_n \\
a_{n+1}
\end{array} \biggr)=\biggl( \begin{array}{cc}
0 & 1 \\
1 & -q_n
\end{array} \biggr) \biggl( \begin{array}{c}
a_{n-1} \\
a_{n}
\end{array} \biggr)$

ただし,$a_{N+1}=0$となる自然数$N$が存在すれば,$n>N$に対して$q_n$および$a_{n+1}$は定義しない.このとき,次の問いに答えよ.

(1)$a_{N+1}=0$となる自然数$N$が存在することを証明せよ.
(2)$a_N=aa_0+ba_1$を満たす整数$a,\ b$が存在することを証明せよ.
(3)$a_N$は$a_0$と$a_1$の最大公約数であることを証明せよ.
広島大学 国立 広島大学 2011年 第2問
次の問いに答えよ.

(1)$\displaystyle \log_2 3 = \frac{m}{n}$を満たす自然数$m,\ n$は存在しないことを証明せよ.
(2)$p,\ q$を異なる自然数とするとき,$p \log_2 3$と$q \log_2 3$の小数部分は等しくないことを証明せよ.
(3)$\log_2 3$の値の小数第1位を求めよ.
金沢大学 国立 金沢大学 2011年 第4問
次の問いに答えよ.

(1)自然数$n$に対して,$\displaystyle \int_n^{n+1} \frac{1}{x} \, dx$を求めよ.また
\[ \frac{1}{n+1} < \log (n+1) -\log n < \frac{1}{n} \]
を示せ.
(2)2以上の自然数$n$に対して
\[ \log (n+1) < \sum_{k=1}^n \frac{1}{k} < 1+\log n \]
を示せ.
(3)2以上の自然数$n$に対して
\[ \sum_{k=1}^n \frac{1}{ee^{\frac{1}{2}}e^{\frac{1}{3}} \cdots e^{\frac{1}{k}}} > \frac{1}{e} \log (n+1) \]
を示せ.
九州大学 国立 九州大学 2011年 第2問
数列$a_1,\ a_2,\ \cdots,\ a_n,\ \cdots$は
\[ a_{n+1} = \frac{2a_n}{1-a_n^2},\quad n = 1,\ 2,\ 3,\ \cdots \]
をみたしているとする.このとき,以下の問いに答えよ.

(1)$\displaystyle a_1 = \frac{1}{\sqrt{3}}$とするとき,$a_{10}$および$a_{11}$を求めよ.
(2)$\displaystyle \tan \frac{\pi}{12}$の値を求めよ.
(3)$\displaystyle a_1 = \tan \frac{\pi}{7}$とする.$a_k = a_1$をみたす$2$以上の自然数$k$で最小のものを求めよ.
岩手大学 国立 岩手大学 2011年 第2問
以下の問いに答えよ.

(1)自然数$n$に関する次の命題を証明せよ.

(i) $n$を$3$で割った余りが1ならば,$n^2$を$3$で割った余りは$1$である.
(ii) $n$が$3$の倍数であることは,$n^2$が$3$の倍数であるための必要十分条件である.

(2)$100$から$999$までの$3$桁の自然数について,次の問いに答えよ.

(i) $3$種類の数字が現れるものは何個あるか.
\mon[$(ⅱ)$)] $0$が現れないものは何個あるか.
(iii) $0$または$1$が現れるものは何個あるか.

(3)$1$から$49$までの自然数からなる集合を全体集合$U$とする.$U$の要素のうち,$50$との最大公約数が$1$より大きいもの全体からなる集合を$V$,また,$U$の要素のうち,偶数であるもの全体からなる集合を$W$とする.いま$A$と$B$は$U$の部分集合で,次の$2$つの条件を満たすものとする.

\mon[(ア)] $A \cup \overline{B}=V$
\mon[(イ)] $\overline{A} \cap \overline{B} = W$

このとき,集合$A$の要素をすべて求めよ.ただし,$\overline{A}$と$\overline{B}$はそれぞれ$A$と$B$の補集合とする.
弘前大学 国立 弘前大学 2011年 第1問
次の定積分を求めよ.

(1)$\displaystyle \int_0^\pi \cos mx \; \cos nx \; dx$\quad ただし,$m,\ n$は自然数である.
(2)$\displaystyle \int_1^3 \left(x-\frac{1}{x} \right) (\log x)^2 \, dx$
弘前大学 国立 弘前大学 2011年 第2問
$n$を自然数とし,
\[ S_n = \int_{(n-1)\pi}^{n \pi} e^{-x} (| \sin x |+1) \; dx \]
とする.ただし,$e$は自然対数の底である.このとき,次の問いに答えよ.

(1)$e^{-x}(\sin x+ \cos x)$を微分せよ.
(2)$S_n$および無限級数$\displaystyle \sum_{n=1}^\infty S_n$の和を求めよ.
東京工業大学 国立 東京工業大学 2011年 第1問
$n$を自然数とする.$xy$平面上で行列$\left( \begin{array}{cc}
1-n & 1 \\
-n(n+1) & n+2
\end{array} \right)$の表す1次変換(移動ともいう)を$f_n$とする.以下の問に答えよ.

(1)原点O$(0,\ 0)$を通る直線で,その直線上のすべての点が$f_n$により同じ直線上に移されるものが2本あることを示し,この2直線の方程式を求めよ.
(2)(1)で得られた2直線と曲線$y = x^2$によって囲まれる図形の面積$S_n$を求めよ.
(3)$\displaystyle \sum_{n=1}^\infty \frac{1}{S_n-\frac{1}{6}}$を求めよ.
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。