タグ「自然数」の検索結果

88ページ目:全1172問中871問~880問を表示)
東京大学 国立 東京大学 2011年 第2問
実数$x$の小数部分を,$0 \leqq y<1$かつ$x-y$が整数となる実数$y$のこととし,これを記号$\langle x \rangle$で表す.実数$a$に対して,無限数列$\{a_n\}$の各項$a_n \ (n=1,\ 2,\ 3,\ \cdots)$を次のように順次定める.
\[ a_1=\langle a\rangle \]
\[
\left\{
\begin{array}{l}
a_n \neq 0 \text{のとき,} \quad a_{n+1}= \displaystyle \left\langle \frac{1}{a} \right\rangle \\
a_n = 0 \text{のとき,} \quad a_{n+1}=0
\end{array}
\right.
\]

(1)$a=\sqrt{2}$のとき,数列$\{a_n\}$を求めよ.
(2)任意の自然数$n$に対して$a_n=a$となるような$\displaystyle \frac{1}{3}$以上の実数$a$をすべて求めよ.
(3)$a$が有理数であるとする.$a$を整数$p$と自然数$q$を用いて$\displaystyle a=\frac{p}{q}$と表すとき,$q$以上のすべての自然数$n$に対して,$a_n=0$であることを示せ.
神戸大学 国立 神戸大学 2011年 第1問
$i=\sqrt{-1}$とする.以下の問に答えよ.

(1)実数$\alpha,\ \beta$について,等式
\[ (\cos \alpha + i\sin \alpha)(\cos \beta + i\sin \beta) = \cos(\alpha+\beta)+i\sin (\alpha+\beta) \]
が成り立つことを示せ.
(2)自然数$n$に対して,
\[ z=\sum_{k=1}^n \left( \cos \frac{2\pi k}{n}+ i \sin \frac{2\pi k}{n} \right) \]
とおくとき,等式
\[ z \left(\cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n} \right) = z \]
が成り立つことを示せ.
(3)2以上の自然数$n$について,等式
\[ \sum_{k=1}^n \cos \frac{2\pi k}{n} = \sum_{k=1}^n \sin \frac{2\pi k}{n} = 0 \]
が成り立つことを示せ.
九州大学 国立 九州大学 2011年 第3問
数列$a_1,\ a_2,\ \cdots,\ a_n,\ \cdots$は
\[ a_{n+1} = \frac{2a_n}{1-a_n^2}, \quad n=1,\ 2,\ 3,\ \cdots \]
をみたしているとする.このとき,以下の問いに答えよ.

(1)$\displaystyle a_1=\frac{1}{\sqrt{3}}$とするとき,一般項$a_n$を求めよ.
(2)$\displaystyle \tan \frac{\pi}{12}$の値を求めよ.
(3)$\displaystyle a_1=\tan \frac{\pi}{20}$とするとき,
\[ a_{n+k} = a_n, \quad n=3,\ 4,\ 5,\ \cdots \]
をみたす最小の自然数$k$を求めよ.
北海道大学 国立 北海道大学 2011年 第4問
$n$を$2$以上の自然数,$q$と$r$を自然数とする.$1$から$nq$までの番号がついた$nq$個の白玉,$1$から$nr$までの番号がついた$nr$個の赤玉を用意する.これら白玉と赤玉を,$1$番から$n$番まで番号づけられた$n$個の箱それぞれに,小さい番号から順に白玉は$q$個ずつ,赤玉は$r$個ずつ配分しておく.たとえば,$1$番目の箱には番号$1$から$q$の白玉と番号$1$から$r$までの赤玉が入っている.これら$n(q+r)$個の玉を$n$個の箱に以下のように再配分する.$1$番の箱から$1$個の玉を取り出して$2$番の箱に移し,次に$2$番の箱から$1$個の玉を取り出して$3$番の箱に移す.同様の操作を順次繰り返し最後に$n$番の箱に$1$個の玉を移して終了する.このようにして実現され得る再配分の総数を$s_n$とし,$n$番の箱の白玉が$q+1$個であるような再配分の総数を$a_n$とする.

(1)$s_2$を求めよ.
(2)$s_3$と$a_3$を求めよ.
(3)$s_4$と$a_4$を求めよ.
北海道大学 国立 北海道大学 2011年 第2問
行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$について,以下の$3$つの条件を考える.

$(ⅰ)$ $a+d=ad-bc=0$
$(ⅱ)$ $A^2=O$
$(ⅲ)$ ある自然数$n$に対して$A^n=O$

このとき,次の問いに答えよ.

(1)$(ⅰ)$ならば$(ⅱ)$であることを示せ.
(2)$(ⅲ)$ならば$ad-bc=0$であることを示せ.
(3)$(ⅲ)$ならば$(ⅰ)$であることを示せ.
神戸大学 国立 神戸大学 2011年 第3問
$n$を$2$以上の自然数として,
\[ S_n= \sum_{k=n}^{n^3-1}\frac{1}{k\log k} \]
とおく.以下の問に答えよ.

(1)$\displaystyle \int_n^{n^3} \frac{dx}{x\log x}$を求めよ.
(2)$k$を$2$以上の自然数とするとき,
\[ \frac{1}{(k+1)\log (k+1)} < \int_k^{k+1} \frac{dx}{x \log x} < \frac{1}{k\log k} \]
を示せ.
(3)$\displaystyle \lim_{n \to \infty} S_n$の値を求めよ.
神戸大学 国立 神戸大学 2011年 第5問
以下の問に答えよ.

(1)$x \geqq 1$において,$x > 2\log x$が成り立つことを示せ.ただし,$e$を自然対数の底とするとき,$2.7<e<2.8$であることを用いてよい.
(2)自然数$n$に対して,
\[ (2n \log n)^n < e^{2n\log n} \]
が成り立つことを示せ.
北海道大学 国立 北海道大学 2011年 第4問
$n$を2以上の自然数,$q$と$r$を自然数とする.1から$nq$までの番号がついた$nq$個の白玉,1から$nr$までの番号がついた$nr$個の赤玉を用意する.これら白玉と赤玉を,1番から$n$番まで番号づけられた$n$個の箱それぞれに,小さい番号から順に白玉は$q$個ずつ,赤玉は$r$個ずつ配分しておく.たとえば,1番目の箱には番号1から$q$の白玉と番号1から$r$までの赤玉が入っている.これら$n(q+r)$個の玉を$n$個の箱に以下のように再配分する.1番の箱から1個の玉を取り出して2番の箱に移し,次に2番の箱から1個の玉を取り出して3番の箱に移す.同様の操作を順次繰り返し最後に$n$番の箱に1個の玉を移して終了する.このようにして実現され得る再配分の総数を$s_n$とし,$n$番の箱の白玉が$q+1$個であるような再配分の総数を$a_n$とする.

(1)$a_3$と$a_3$を求めよ.
(2)$s_n$を求めよ.
(3)$a_{n+1}-a_n$を求めよ.
(4)$a_n$を求めよ.
岡山大学 国立 岡山大学 2011年 第3問
$n$を自然数とする.曲線$y = x^2(1-x)^n \ (0 \leqq x \leqq 1)$と$x$軸とで囲まれる図形の面積を$S_n$とする.

(1)$S_n$を求めよ.
(2)$T_n = S_1 +S_2 + \cdots + S_n$とするとき,$\displaystyle \lim_{n \to \infty} T_n$を求めよ.
大阪大学 国立 大阪大学 2011年 第4問
$a,\ b,\ c$を正の定数とし,$x$の関数$f(x) = x^3 +ax^2 +bx+c$を考える.以下,定数は全て実数とする.

(1)定数$p,\ q$に対し,次をみたす定数$r$が存在することを示せ.
\[ x \geqq 1 \quad \text{ならば} \quad |px+q| \leqq rx \]
(2)恒等式$(\alpha-\beta)(\alpha^2+\alpha\beta+\beta^2)=\alpha^3-\beta^3$を用いて,次をみたす定数$k,\ l$が存在することを示せ.
\[ x \geqq 1 \quad \text{ならば} \quad \left|\sqrt[3]{f(x)}-x-k \right| \leqq \frac{l}{x} \]
(3)すべての自然数$n$に対して,$\sqrt[3]{f(n)}$が自然数であるとする.このとき関数$f(x)$は,自然数の定数$m$を用いて$f(x)=(x+m)^3$と表されることを示せ.
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。