タグ「自然数」の検索結果

84ページ目:全1172問中831問~840問を表示)
東北工業大学 私立 東北工業大学 2012年 第2問
次の問いに答えよ.

(1)先生$2$人と生徒$4$人の合計$6$人が円形のテーブルに向かって座るとき,先生$2$人が隣り合うような座り方は全部で$[][]$通りある.
(2)赤球と白球が$3$個ずつ入っている袋から同時に$3$個の球を取りだすとき,赤球$2$個,白球$1$個である確率は$\displaystyle \frac{[][]}{20}$である.
(3)$2$つのベクトルを$\overrightarrow{a}=(\sqrt{3},\ 7)$,$\overrightarrow{b}=(-\sqrt{3},\ 1)$とし,$t$は実数とする.$\overrightarrow{a}+t \overrightarrow{b}$の大きさは$t=-[][]$のとき最小となり,最小値は$[][] \sqrt{3}$である.
(4)$n$を自然数とする.初項が$-2$,公差が$\displaystyle \frac{1}{12}$の等差数列の初項から第$n$項までの和を$S_n$とおくとき,$S_{24}=-[][]$である.
津田塾大学 私立 津田塾大学 2012年 第1問
次の問いに答えよ.

(1)$n$を自然数とする.二項係数$\comb{2n}{n}$について,不等式$\comb{2n}{n} \leqq 2^{2n-1}$が成り立つことを示せ.
(2)$0 \leqq \theta<2\pi$のとき,不等式$1+\cos \theta+\cos 2\theta>\sin \theta+\sin 2\theta$を満たす$\theta$の値の範囲を求めよ.
北海学園大学 私立 北海学園大学 2012年 第5問
$1$から$n$までの自然数の和を$a_n$と表すとき,数列$\{b_n\}$は
\[ b_1=0,\quad b_{n+1}-b_n=a_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たす.

(1)$b_6$の値を求めよ.
(2)数列$\{b_n\}$の一般項を求めよ.
(3)$b_n=165$のとき,$n$の値を求めよ.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)実数$\theta$に対し,$\mathrm{O}(0,\ 0,\ 0)$を原点とする座標をもつ空間において,$3$点
\[ \mathrm{P}(\cos \theta,\ \sin \theta,\ 0),\quad \mathrm{Q}(0,\ \cos \theta,\ \sin \theta),\quad \mathrm{R}(0,\ \cos 2\theta,\ \sin 2\theta) \]
を考える.

(i) $\theta$が$-\pi \leqq \theta<\pi$の範囲を動くとき,$\mathrm{PQ}^2$の最大値は$[ア]$であり,最大値を与える$\theta$の値は$\displaystyle -\frac{[イ]}{[ウ]} \pi$と$\displaystyle \frac{[エ]}{[オ]} \pi$である.
(ii) ベクトル$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OR}}$のなす角を$\alpha$とする.$\theta$が$\displaystyle \frac{\pi}{6} \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$\cos \alpha$の最大値は$\displaystyle \frac{[カ]}{[キ]}$であり,最大値を与える$\theta$の値は$\displaystyle \frac{[ク]}{[ケ]} \pi$である.$\theta$が$\displaystyle -\frac{\pi}{6} \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$\cos \alpha$の最大値は$\displaystyle \frac{\sqrt{[コ]}}{[サ]}$である.$\theta$が$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$\cos \alpha$の最大値は$[シ]$であり,最大値を与える$\theta$の値は$\displaystyle -\frac{[ス]}{[セ]} \pi$である.

(2)零行列でない$2$次の正方行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$が,等式$A^2=4A$を満たしているとする.

(i) $bc=0$のとき,$a+d$の値は$[ソ]$または$[タ]$である.また,$bc \neq 0$のとき,$a+d=[チ]$,$ad-bc=[ツ]$となる.特に,$b=c>0$とすると,
\[ A=\left( \begin{array}{cc}
a & \sqrt{([テ]-[ト]a)a} \\
\sqrt{([ナ]-[ニ]a)a} & [ヌ]-[ネ]a
\end{array} \right) \]
となる.
(ii) 自然数$n$に対し,
\[ \sum_{k=1}^n \comb{n}{k} 4^k 3^{n-k}=[ノ]^n-[ハ]^n \]
であるから,
\[ (A+3E)^n=\frac{[ヒ]}{[フ]} ([ヘ]^n-[ホ]^n)A+[マ]^n E \]
となる.ここで,$E$は$2$次の単位行列を表す.
神戸薬科大学 私立 神戸薬科大学 2012年 第3問
以下の文中の$[ ]$の中にいれるべき数または式等を求めて記入せよ.

(1)互いに異なる$6$個の薬品がある.この$6$個の薬品を$3$つのグループに分けたい.

$1$個,$2$個,$3$個に分ける方法は$[ ]$通りである.
$1$個,$1$個,$4$個に分ける方法は$[ ]$通りである.
$2$個,$2$個,$2$個に分ける方法は$[ ]$通りである.

(2)$2012$を$2$つ以上のいくつかの連続した自然数の和で表したい.連続した自然数を$a,\ a+1,\ a+2,\ \cdots,\ a+n$と表したとき,その和$S$を$a$と$n$で表すと$S=[ ]$である.また,この連続した自然数をすべてあげると$[ ]$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2012年 第3問
次の問いに答えよ.

(1)連立$1$次方程式
\[ \left\{ \begin{array}{l}
5x-y=kx \\
6x-2y=ky
\end{array} \right. \]
が$(x,\ y)=(0,\ 0)$以外の解をもつような$k$を$k_1,\ k_2$(ただし$k_1<k_2$)とおくと,$k_1=[$7$]$,$k_2=[$8$]$である.
(2)$(1)$で求めた$k_1$に対して$(x,\ y)=(1,\ a)$,$k_2$に対して$(x,\ y)=(b,\ 1)$が各々上の連立$1$次方程式を満たすとき,行列$A$と$P$を
\[ A=\left( \begin{array}{cc}
5 & -1 \\
6 & -2
\end{array} \right),\quad P=\left( \begin{array}{cc}
1 & b \\
a & 1
\end{array} \right) \]
とおくと$P^{-1}AP=[$9$]$となる.これより自然数$n$に対して$A^n=[$10$]$である.
(3)自然数$n$に対して漸化式
\[ \left\{ \begin{array}{l}
a_{n+1}=5a_n-b_n \\
b_{n+1}=6a_n-2b_n
\end{array} \right. ,\quad a_1=1,\ b_1=2 \]
を満たす数列$\{a_n\},\ \{b_n\}$の一般項を求めると,$a_n=[$11$]$,$b_n=[$12$]$である.
産業医科大学 私立 産業医科大学 2012年 第3問
自然数$n$と$0$以上の整数$m$に対して,$\displaystyle p_n=\comb{2n}{n} {\left( \frac{1}{2} \right)}^{2n}$,$\displaystyle I_m=\int_0^{\frac{\pi}{2}} \sin^m x \, dx$とおく.次の問いに答えなさい.

(1)すべての自然数$n$について$\displaystyle \left( n+\frac{1}{2} \right) {p_n}^2=\frac{bI_{2n}}{I_{2n+1}}$が成り立つように,定数$b$の値を求めなさい.
(2)$\displaystyle 0<x<\frac{\pi}{2}$のとき,$\sin^m x>\sin^{m+1} x>0$であることを用いて,極限$\displaystyle \lim_{n \to \infty} \sqrt{n} p_n$を求めなさい.
大阪薬科大学 私立 大阪薬科大学 2012年 第1問
次の問いに答えなさい.

(1)自然数$m,\ n$に対し,命題「$m^2+n^2$が偶数ならば,$m+n$は偶数である」が真ならば「真」と,偽ならば反例を$[$\mathrm{A]$}$に記入しなさい.
(2)$2^x=5^y=100$のとき,$\displaystyle \frac{1}{x}+\frac{1}{y}=[$\mathrm{B]$}$となる.
(3)$xy$座標平面において,円$x^2+y^2=3$と直線$x+y=1$の$2$つの交点を結ぶ線分の長さは,$[$\mathrm{C]$}$である.
(4)数直線上を動く点$\mathrm{P}$が原点$\mathrm{O}$にある.表と裏が等しい確率で出るコインを投げ,表が出ると正方向に$1$だけ進み,裏が出ると負方向に$1$だけ進むことを繰り返す.コインを$10$回投げるとき,$\mathrm{P}$の座標が$-6$となる確率は,$[$\mathrm{D]$}$である.
(5)方程式$x^3-3x^2-9x-a=0$が異なる$3$つの実数解を持つとき,定数$a$が満たさなければならない条件を$[あ]$で求めなさい.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2012年 第2問
$n$を自然数,$c$および$d$を実数として,数列$\{a_n\}$を初項$c$,公差$d$の等差数列,数列$\{b_n\}$を初項$3$,公差$2$の等差数列とするとき,以下の設問に答えなさい.

(1)$d \neq 0$のとき,
\[ \sum_{k=1}^n e^{a_k}=[$1$] \]
となる.ただし,$e$は自然対数の底とする.
(2)数列$\{f_n\}$の第$n$項を$f_n=b_ne^{a_n}$と定義する.$d=-0.08$のとき,$f_n$の値が最大になるのは$n=[$2$]$のときである.
北海道科学大学 私立 北海道科学大学 2012年 第2問
$U=\{n \;|\; n \text{は} 1 \text{から} 100 \text{までの自然数} \}$を全体集合として,その部分集合を

$A=\{n \;|\; n \text{は} 2 \text{の倍数} \}$
$B=\{n \;|\; n \text{は} 3 \text{の倍数} \}$

とする.このとき$A \cup B$に属する要素の個数は$[$1$]$であり,$\overline{A} \cap \overline{B}$に属する要素の個数は$[$2$]$である.
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。