タグ「自然数」の検索結果

76ページ目:全1172問中751問~760問を表示)
山形大学 国立 山形大学 2012年 第3問
自然数$n$に対して
\[ S(x)=\sum_{k=1}^n (-1)^{k-1}x^{2k-2},\quad R(x)=\frac{(-1)^n x^{2n}}{1+x^2} \]
とする.さらに$\displaystyle f(x)=\frac{1}{1+x^2}$とする.このとき,次の問に答えよ.

(1)等式$\displaystyle \int_0^1 S(x) \, dx=\sum_{k=1}^n (-1)^{k-1}\frac{1}{2k-1}$が成り立つことを示せ.
(2)定積分$\displaystyle \int_0^1 f(x) \, dx$の値を求めよ.
(3)等式$S(x)=f(x)-R(x)$が成り立つことを示せ.
(4)不等式$\displaystyle |\int_0^1 R(x) \, dx| \leqq \frac{1}{2n+1}$が成り立つことを示せ.
(5)無限級数$\displaystyle 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots$の和を求めよ.
茨城大学 国立 茨城大学 2012年 第1問
数列$\{a_n\}$を$\displaystyle a_n=\frac{1}{\sqrt{5}} \left\{ \left( \frac{3+\sqrt{5}}{2} \right)^{n-1}-\left( \frac{3-\sqrt{5}}{2} \right)^{n-1} \right\} \ (n=1,\ 2,\ 3,\ \cdots)$と定義する.次の各問に答えよ.

(1)$a_1,\ a_2,\ a_3,\ a_4$を求めよ.
(2)すべての自然数$n$に対して,次の漸化式が成り立つように実数$p,\ q$を定めよ.
\[ a_{n+2}=pa_{n+1}+qa_n \]
(3)$a_n$が奇数なら$a_{n+3}$も奇数となり,$a_n$が偶数なら$a_{n+3}$も偶数となることを示せ.
東京農工大学 国立 東京農工大学 2012年 第1問
$a,\ b$は実数で$b>0$とする.行列
\[ A=\left( \begin{array}{cc}
a & b \\
-b & 1-a
\end{array} \right),\quad B=\left( \begin{array}{cc}
0 & 1 \\
1 & 0
\end{array} \right) \]
が$ABAB=E$を満たしている.ただし$E$は2次の単位行列とする.次の問いに答えよ.

(1)$b$を$a$の式で表せ.
(2)$n$を自然数とする.$A^n=E$を満たす最小の$n$を求めよ.
(3)座標平面上において,$a=2$のとき行列$A$の表す1次変換を$f$とおく.点$\mathrm{P}(1,\ 1)$が$f$によって移る点を$\mathrm{Q}$とし,$\mathrm{Q}$が$f$によって移る点を$\mathrm{R}$とする.このとき$\triangle \mathrm{PQR}$の面積$S$を求めよ.
大阪教育大学 国立 大阪教育大学 2012年 第1問
$a,\ b,\ c$を自然数とするとき,次の不等式を示せ.

(1)$2^{a+b} \geqq 2^a+2^b$
(2)$2^{a+b+c} \geqq 2^a+2^b+2^c+2$
(3)$2^{a+b+c} \geqq 2^{a+b}+2^{b+c}+2^{c+a}-4$
大阪教育大学 国立 大阪教育大学 2012年 第3問
$n$は自然数とする.次の問に答えよ.

(1)次の不等式を示せ.
\[ \sum_{k=1}^n \frac{1}{k^2}<2 \]
(2)$x>0$のとき,次の不等式を示せ.
\[ x-\frac{x^3}{6}<\sin x<x \]
(3)次の極限を求めよ.
\[ \lim_{n \to \infty}\frac{1}{n} \left( \sum_{k=1}^n k \sin \frac{1}{k} \right) \]
京都工芸繊維大学 国立 京都工芸繊維大学 2012年 第4問
$p$を自然数とし,$r$を1より大きい実数とする.数列$a_n \ (n=1,\ 2,\ 3,\ \cdots)$は次の条件$(ⅰ),\ (ⅱ),\ (ⅲ)$をすべて満たしている.

$(ⅰ)$ $\displaystyle a_n=r^{n-1}+\frac{1}{r^{n-1}} \ (n=1,\ 2,\ 3,\ \cdots)$
$(ⅱ)$ $a_2=p$
$(ⅲ)$ $a_3 \leqq 13$

このとき,次の問いに答えよ.

(1)すべての自然数$n$について,$a_{n+2}=pa_{n+1}-a_n$が成り立つことを証明せよ.
(2)$p$および$r$の値を求めよ.
(3)$m$を自然数とする.$2m$個の数$a_1,\ a_2,\ \cdots,\ a_{2m}$のうち,3の倍数であるものすべての和を求めよ.
鳥取大学 国立 鳥取大学 2012年 第4問
$3$以上の自然数$n$に対して
\[ S_n=\sum_{k=3}^n \frac{\log k}{k} \quad (n=3,\ 4,\ 5,\ \cdots) \]
とおいて数列$\{S_n\}$を定める.次の問いに答えよ.

(1)関数$\displaystyle y=\frac{\log x}{x} \ (x>0)$の増減と極値を調べよ.
(2)$4$以上の自然数$n$に対して不等式
\[ S_n-\frac{\log 3}{3} \leqq \int_3^n \frac{\log x}{x} \, dx \leqq S_{n-1} \]
が成り立つことを示せ.
(3)$\displaystyle \lim_{n \to \infty}\frac{S_n}{(\log n)^2}$を求めよ.
大阪教育大学 国立 大阪教育大学 2012年 第2問
$m$を9以下の自然数とする.箱の中に$m$枚のカードが入っており,それぞれのカードに$1,\ 2,\ \cdots,\ m$の数字がひとつずつ書かれている.ただし,異なるカードには異なる数字が書かれているものとする.この箱からカードを1枚引き,そのカードに書かれた数字を記録してから元に戻す.この操作を2回繰り返す.1回目に引いたカードに書かれた数字を$a$,2回目に引いたカードに書かれた数字を$b$とし,また,$a$を十の位,$b$を一の位とする,2桁の数を$n$とする.次の問に答えよ.

(1)$a+b$が3で割り切れる確率と$n$が3で割り切れる確率は等しいことを示せ.
(2)$a+2b$を3で割った余りと$n$を3で割った余りが等しくなる確率が$\displaystyle \frac{1}{3}$となる$m$をすべて求めよ.
山形大学 国立 山形大学 2012年 第3問
$n$を自然数とする.このとき,次の問に答えよ.

(1)$\displaystyle \lim_{n \to \infty}\frac{1}{n^3}\sum_{k=1}^n k^2$を求めよ.
(2)$0<r<1$とし,$S_n=1+2r+3r^2+\cdots +nr^{n-1}$とおく.

(i) $S_n-rS_n$を求めよ.
(ii) $\displaystyle \lim_{n \to \infty}\frac{1}{n}S_n$を求めよ.

(3)$a>0,\ b>0$に対して,不等式
\[ a+b-\sqrt{ab}<\sqrt{a^2+b^2}<a+b \]
が成り立つことを証明せよ.
(4)$\displaystyle \lim_{n \to \infty}\sum_{k=1}^n \sqrt{\displaystyle\frac{1}{3^{2(k-1)}}+\frac{k^4}{n^6}}$を求めよ.
東北大学 国立 東北大学 2012年 第6問
数列$\{a_n\}$を
\[ a_1=1,\quad a_{n+1}=\sqrt{\frac{3a_n+4}{2a_n+3}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.以下の問いに答えよ.

(1)$n \geqq 2$のとき,$a_n>1$となることを示せ.
(2)$\displaystyle \alpha^2=\frac{3 \alpha+4}{2 \alpha+3}$を満たす正の実数$\alpha$を求めよ.
(3)すべての自然数$n$に対して$a_n<\alpha$となることを示せ.
(4)$0<r<1$を満たすある実数$r$に対して,不等式
\[ \frac{\alpha-a_{n+1}}{\alpha-a_n} \leqq r \quad (n=1,\ 2,\ 3,\ \cdots) \]
が成り立つことを示せ.さらに,極限$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。