タグ「自然数」の検索結果

69ページ目:全1172問中681問~690問を表示)
埼玉大学 国立 埼玉大学 2012年 第2問
行列$A$を$\left(
\begin{array}{ccc}
a & 1 \\
b & 2
\end{array}
\right)$とし,$E,\ O$をそれぞれ$2$次の単位行列,零行列とする.

(1)$A^2-5A+4E=O$を満たす実数$a,\ b$を求めよ.
(2)$n$を$2$以上の自然数とする.$x^n$を$x^2-5x+4$で割った余りを求めよ.
(3)$a,\ b$を(1)で求めた実数とする.$2$以上の自然数$n$に対して,$A^n$を求めよ.
神戸大学 国立 神戸大学 2012年 第2問
$x$を実数とし,$A=\left(
\begin{array}{cc}
4 & -1 \\
2 & 1
\end{array}
\right),\ E=\left(
\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}
\right),\ P=A-xE$とおく.$P$は$P^2=P$をみたすとする.以下の問に答えよ.

(1)$x$の値を求めよ.
(2)$n$を自然数とする.
\[ A^n = a_n P + b_n E \]
をみたす$a_n,\ b_n$を$n$を用いて表せ.
信州大学 国立 信州大学 2012年 第1問
次の設問に答えよ.

(1)すべての自然数$n$に対して$\displaystyle \frac{1}{n^2+6n+8}=\frac{A}{n+2}+\frac{B}{n+4}$を満たすような定数$A,\ B$の値を求めよ.また,無限級数$\displaystyle \sum_{n=1}^\infty \frac{1}{n^2+6n+8}$の和を求めよ.
(2)面積が$\displaystyle \frac{3\sqrt{3}}{2}$の三角形$\mathrm{ABC}$において,$\mathrm{AB}=3,\ \mathrm{AC}=2$であるとき,辺$\mathrm{BC}$の長さを求めよ.
(3)座標空間において,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 2)$を通る平面を$\alpha$とする.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る球面の中心$\mathrm{M}$が平面$\alpha$上にあるとき,$\mathrm{M}$の座標と球面の半径$r$を求めよ.
信州大学 国立 信州大学 2012年 第1問
次の問いに答えよ.

(1)$n$を自然数とするとき,$4^{2n-1}+3^{n+1}$は13の倍数であることを示せ.
(2)$\displaystyle \frac{1}{5-\sqrt{19}}$の整数部分を$\alpha$,小数部分を$\beta$とするとき$\alpha,\ \beta$を求めよ.また$\alpha^2-18 \beta^2$を求めよ.
神戸大学 国立 神戸大学 2012年 第3問
以下の問いに答えよ.

(1)正の実数$x,\ y$に対して
\[ \frac{y}{x}+\frac{x}{y} \geqq 2 \]
が成り立つことを示し,等号が成立するための条件を求めよ.
(2)$n$を自然数とする.$n$個の正の実数$a_1,\ \cdots,\ a_n$に対して
\[ (a_1 +\cdots+a_n) \left( \frac{1}{a_1}+\cdots+\frac{1}{a_n} \right) \geqq n^2 \]
が成り立つことを示し,等号が成立するための条件を求めよ.
静岡大学 国立 静岡大学 2012年 第4問
$a_1$を$\displaystyle \frac{\pi}{12} < a_1 < \frac{\pi}{4}$を満たす数とし,$\{a_n\}$を
\[ a_{n+1} = 1-\sin \;a_n \ (n=1,\ 2,\ 3,\ \cdots) \]
で定められる数列とする.このとき,次の問いに答えよ.

(1)直線$y=1-x$と曲線$y=\sin x$は,$\displaystyle \frac{\pi}{12} < x < \frac{\pi}{4}$の範囲でただ1つの交点をもつことを示せ.
(2)$n$を自然数とするとき,不等式$\displaystyle \frac{\pi}{12} < a_n < \frac{\pi}{4}$を示せ.
(3)(1)の交点の$x$座標を$\alpha$とするとき,$\displaystyle \lim_{n \to \infty}a_n=\alpha$が成り立つことを示せ.
金沢大学 国立 金沢大学 2012年 第3問
$\log_{10}2 = 0.3010,\ \log_{10}3 = 0.4771$とする.次の問いに答えよ.

(1)$\displaystyle \log_{10} \left(\frac{2}{3}\right),\ \log_{10} \left( \frac{1}{2} \right)$の値を求めよ.
(2)$\displaystyle \left( \frac{2}{3} \right)^m \geqq \frac{1}{10},\ \left( \frac{1}{2} \right)^n \geqq \frac{1}{10}$を満たす最大の自然数$m,\ n$を求めよ.
(3)連立不等式$\displaystyle \left( \frac{2}{3} \right)^x \left( \frac{1}{2} \right)^y \geqq \frac{1}{10},\ x \geqq 0,\ y \geqq 0$の表す領域を座標平面に図示せよ.
(4)$\displaystyle \left( \frac{2}{3} \right)^m \left( \frac{1}{2} \right)^n \geqq \frac{1}{10}$を満たす自然数$m$と$n$の組$(m,\ n)$をすべて求めよ.
広島大学 国立 広島大学 2012年 第1問
行列$A=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$の表す$1$次変換によって,$2$点$\mathrm{P}(1,\ 1)$,$\mathrm{Q}(2,\ 2)$は連立不等式$1 \leqq x \leqq 2,\ 1 \leqq y \leqq 2$の表す領域内の点$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$にそれぞれ移されるものとする.ただし,$a,\ b,\ c,\ d$は正の実数で$a>c$を満たすとする.次の問いに答えよ.

(1)$a+b=1$および$c+d=1$が成り立つことを証明せよ.
(2)$4$点$\mathrm{O}(0,\ 0)$,$\mathrm{R}(a,\ c)$,$\mathrm{S}(a+b,\ c+d)$,$\mathrm{T}(b,\ d)$を頂点とする平行四辺形$\mathrm{ORST}$の面積を$p$とするとき,次の式が成り立つことを証明せよ.
\[ A \biggl( \begin{array}{c}
b \\
-c
\end{array} \biggr) = p \biggl( \begin{array}{c}
b \\
-c
\end{array} \biggr) \]
(3)自然数$n$に対して,$a_n,\ b_n,\ c_n,\ d_n$を
\[ \biggl( \begin{array}{cc}
a_n & b_n \\
c_n & d_n
\end{array} \biggr) = A^n \biggl( \begin{array}{cc}
1 & b \\
1 & -c
\end{array} \biggr) \]
で定める.このとき$a_n,\ b_n,\ c_n,\ d_n$を$b,\ c,\ n$および(2)の$p$を用いて表せ.
(4)$\displaystyle A^3=\frac{1}{27} \biggl( \begin{array}{cc}
14 & 13 \\
13 & 14
\end{array} \biggr)$となるように$A$を定めよ.
広島大学 国立 広島大学 2012年 第2問
$a$を実数とし,$f(x)=x^3-3x^2+3x$とおく.数列$\{x_n\}$を
\[ x_1=a,\ x_{n+1}=f(x_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.次の問いに答えよ.

(1)すべての自然数$n$について$x_n=a$となるとき,$a$を求めよ.
(2)$a<1$のとき,$x_n<1 \ (n=1,\ 2,\ 3,\ \cdots)$が成り立つことを証明せよ.
(3)$0<a<1$のとき,$x_n<x_{n+1} \ (n=1,\ 2,\ 3,\ \cdots)$が成り立つことを証明せよ.
広島大学 国立 広島大学 2012年 第5問
$n$は自然数とし,点Pは次の規則にしたがって座標平面上を動くとする.\\
規則:\\
\quad (A) \ Pは,はじめに点$(1,\ 2)$にある.\\
\quad (B) \ さいころを投げて2以下の目が出ればPは原点を中心に反時計回りに$120^\circ$回転し,3以上の目が出れば時計回りに$60^\circ$回転する.\\
\quad (C) \ (B)を$n$回繰り返す.\\
ただし,さいころの目の出方は同様に確からしいとする.次の問いに答えよ.

(1)$n=3$のとき,出た目が$4,\ 1,\ 2$であったとする.このときPが最後に移った点の座標を求めよ.
(2)$n=3$のとき,Pが点$(1,\ 2)$にある確率を求めよ.
(3)$n=6$のとき,Pが点$(-1,\ -2)$にある確率を求めよ.
(4)$n=3m$のとき,Pが点$(1,\ 2)$にある確率を求めよ.ただし,$m$は自然数とする.
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。