タグ「自然数」の検索結果

54ページ目:全1172問中531問~540問を表示)
京都大学 国立 京都大学 2013年 第2問
$N$を$2$以上の自然数とし,$a_n \ (n=1,\ 2,\ \cdots)$を次の性質$(ⅰ),\ (ⅱ)$をみたす数列とする.

(i) $a_1=2^N-3$
(ii) $n=1,\ 2,\ \cdots$に対して,

$a_n$が偶数のとき$\displaystyle a_{n+1}=\frac{a_n}{2}$,$a_n$が奇数のとき$\displaystyle a_{n+1}=\frac{a_n-1}{2}$.

このときどのような自然数$M$に対しても
\[ \sum_{n=1}^M a_n \leqq 2^{N+1}-N-5 \]
が成り立つことを示せ.
京都大学 国立 京都大学 2013年 第3問
$n$を自然数とし,整式$x^n$を整式$x^2-2x-1$で割った余りを$ax+b$とする.このとき$a$と$b$は整数であり,さらにそれらをともに割り切る素数は存在しないことを示せ.
京都大学 国立 京都大学 2013年 第6問
投げたとき表が出る確率と裏が出る確率が等しい硬貨を用意する.数直線上に石を置き,この硬貨を投げて表が出れば数直線上で原点に関して対称な点に石を移動し,裏が出れば数直線上で座標$1$の点に関して対称な点に石を移動する.

(1)石が座標$x$の点にあるとする.$2$回硬貨を投げたとき,石が座標$x$の点にある確率を求めよ.
(2)石が原点にあるとする.$n$を自然数とし,$2n$回硬貨を投げたとき,石が座標$2n-2$の点にある確率を求めよ.
京都大学 国立 京都大学 2013年 第3問
$n$と$k$を自然数とし,整式$x^n$を整式$(x-k)(x-k-1)$で割った余りを$ax+b$とする.

(1)$a$と$b$は整式であることを示せ.
(2)$a$と$b$をともに割り切る素数は存在しないことを示せ.
京都大学 国立 京都大学 2013年 第5問
投げたとき表が出る確率と裏が出る確率が等しい硬貨を用意する.数直線上に石を置き,この硬貨を投げて表が出れば数直線上で原点に関して対称な点に石を移動し,裏が出れば数直線上で座標$1$の点に関して対称な点に石を移動する.

(1)石が座標$x$の点にあるとする.$2$回硬貨を投げたとき,石が座標$x$の点にある確率を求めよ.
(2)石が原点にあるとする.$n$を自然数とし,$2n$回硬貨を投げたとき,石が座標$2n$の点にある確率を求めよ.
信州大学 国立 信州大学 2013年 第1問
$A=\left( \begin{array}{cc}
8 & -3 \\
6 & -1
\end{array} \right)$とする.このとき,次の問に答えよ.

(1)$P=\left( \begin{array}{cc}
1 & 1 \\
1 & 2
\end{array} \right)$のとき,$P^{-1}AP$を求めよ.
(2)自然数$n$について,$A^n$を求めよ.
信州大学 国立 信州大学 2013年 第3問
次の問いに答えよ.

(1)式
\[ 1=\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3} \]
をみたす自然数の組$(a_1,\ a_2,\ a_3)$で,$1 \leqq a_1 \leqq a_2 \leqq a_3$となるものをすべて求めよ.
(2)$r$を正の有理数とする.式
\[ r=\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3} \]
をみたす自然数の組$(a_1,\ a_2,\ a_3)$で,$1 \leqq a_1 \leqq a_2 \leqq a_3$となるものは有限個しかないことを証明せよ.ただし,そのような組が存在しない場合は$0$個とし,有限個であるとみなす.
埼玉大学 国立 埼玉大学 2013年 第1問
$a,\ b$を0でない実数とし,
\[ A=\left( \begin{array}{cc}
0 & a^2 \\
-b^2 & 2ab
\end{array} \right),\quad E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right),\quad O=\left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right) \]
とする.さらに,実数$p$を,$B=A-pE$が$B^2=O$を満たすように定める.

(1)$p$を$a,\ b$を用いて表せ.
(2)自然数$n$に対し,
\[ A^n=sE+tB \quad (s,\ t \text{は実数}) \]
と表すとき,$s,\ t$を$n,\ a,\ b$を用いて表せ.
(3)自然数$n$に対し,
\[ A^n \left( \begin{array}{c}
a \\
r
\end{array} \right)=q \left( \begin{array}{c}
a \\
r
\end{array} \right) \]
を満たす実数$q$と$r$を$n,\ a,\ b$を用いて表せ.
広島大学 国立 広島大学 2013年 第2問
座標平面上の点で,$x$座標と$y$座標がともに整数である点を格子点という.$n$を$3$以上の自然数とし,連立不等式
\[ x \geqq 0,\quad y \geqq 0,\quad x+y \leqq n \]
の表す領域を$D$とする.格子点$\mathrm{A}(a,\ b)$に対して,領域$D$内の格子点$\mathrm{B}(c,\ d)$が$|a-c|+|b-d|=1$を満たすとき,点$\mathrm{B}$を点$\mathrm{A}$の隣接点という.次の問いに答えよ.

(1)領域$D$内の格子点のうち隣接点の個数が$4$であるものの個数を求めよ.
(2)領域$D$から格子点を$1$つ選ぶとき,隣接点の個数の期待値が$3$以上となるような$n$の範囲を求めよ.ただし,格子点の選ばれ方は同様に確からしいものとする.
(3)領域$D$から異なる格子点を$2$つ選ぶとき,互いに隣接点である確率を求めよ.ただし,異なる格子点の選ばれ方は同様に確からしいものとする.
広島大学 国立 広島大学 2013年 第5問
座標平面上の点で,$x$座標と$y$座標がともに整数である点を格子点という.$n$を$3$以上の自然数とし,連立不等式
\[ x \geqq 0,\quad y \geqq 0,\quad x+y \leqq n \]
の表す領域を$D$とする.格子点$\mathrm{A}(a,\ b)$に対して,領域$D$内の格子点$\mathrm{B}(c,\ d)$が$|a-c|+|b-d|=1$を満たすとき,点$\mathrm{B}$を点$\mathrm{A}$の隣接点という.次の問いに答えよ.

(1)点$\mathrm{O}(0,\ 0)$の隣接点をすべて求めよ.また,領域$D$内の格子点$\mathrm{P}$が直線$x+y=n$上にあるとき,$\mathrm{P}$の隣接点の個数を求めよ.
(2)領域$D$内の格子点のうち隣接点の個数が$4$であるものの個数を求めよ.
(3)領域$D$から格子点を$1$つ選ぶとき,隣接点の個数の期待値が$3$以上となるような$n$の範囲を求めよ.ただし,格子点の選ばれ方は同様に確からしいものとする.
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。