タグ「自然数」の検索結果

52ページ目:全1172問中511問~520問を表示)
岡山県立大学 公立 岡山県立大学 2014年 第2問
次の問いに答えよ.

(1)行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$と単位行列$E$,零行列$O$に対して,等式
\[ A^2-(a+d)A+(ad-bc)E=O \]
が成り立つことを示せ.
(2)行列$B=\left( \begin{array}{cc}
1 & \sqrt{3}+1 \\
\sqrt{3}-1 & 2
\end{array} \right)$と自然数$n$に対して,
\[ B+2B^2+3B^3+\cdots +nB^n=b_nB \]
を満たす実数$b_n$を求めよ.
大阪府立大学 公立 大阪府立大学 2014年 第3問
$x \geqq 0$で定義された関数
\[ f_n(x)=x^a-x^{a+\frac{1}{n}} \]
を考える.ただし,$a$は正の実数とし,$n$は自然数とする.このとき,以下の問いに答えよ.

(1)区間$[0,\ 1]$において,$f_n(x)$の最大値を与える$x$の値を$x_n$とおく.$x_n$を求めよ.
(2)極限$\displaystyle \lim_{n \to \infty} x_n$を求めよ.
大阪府立大学 公立 大阪府立大学 2014年 第4問
以下の問いに答えよ.

(1)関数$f(x)=|x|$が$x=0$において微分可能でないことを微分の定義に基づいて示せ.
(2)$y=x |x|$のグラフの概形を描け.
(3)$m$は自然数とする.関数$g(x)=x^m |x|$が$x=0$において微分可能であるか微分可能でないかを理由をつけて答えよ.
和歌山県立医科大学 公立 和歌山県立医科大学 2014年 第2問
実数$x$に対して,$x$以下で最大の整数を$x$の整数部分といい,$[x]$で表す.自然数$n$に対して,数列$\{a_n\}$を$a_n=[n\pi]$と定め,また数列$\{b_n\}$を,$b_1=b_2=b_3=0$,$n \geqq 4$のときは
\[ a_k<n \leqq a_{k+1} \quad \text{となる} n \text{に対して,} \quad b_n=k \]
と定める.ただし,$\pi$は円周率を表す.

(1)$b_4,\ b_5,\ b_7,\ b_{10}$を求めよ.
(2)自然数$p,\ q$に対して,$a_p<q$ならば$p\pi<q$であることを示せ.
(3)数列$\{b_n\}$の一般項を$n$の式で表せ.このとき,必要なら上記の整数部分を表す記号を用いてよい.
兵庫県立大学 公立 兵庫県立大学 2014年 第1問
一般項が$a_n=\sqrt{n+1}-\sqrt{n}$で定義される数列$\{a_n\}$について,次の問に答えなさい.

(1)すべての自然数$n$に対して$a_{n+1}<a_n$が成り立つことを示しなさい.
(2)$\displaystyle a_n<\frac{1}{10}$となる$n$の最小値を求めなさい.
兵庫県立大学 公立 兵庫県立大学 2014年 第5問
三辺の長さ$x,\ y,\ z$がすべて自然数であり,$x+y+z=100$,$1 \leqq x \leqq y \leqq z$を満たす三角形について考える.ただし,合同な三角形は同一視して考える.次の問に答えなさい.

(1)最大辺の長さ$z$の取り得る値の範囲を求めなさい.
(2)与えられた条件を満たす三角形のうち,最大辺の長さが$45$の三角形は何個あるか.
(3)与えられた条件を満たす三角形は全部で何個あるか.
兵庫県立大学 公立 兵庫県立大学 2014年 第4問
$2$つの数列$\{x_n\}$,$\{y_n\}$を,$x_1=1$,$y_1=0$,かつ,各自然数$n$に対して,
\[ x_{n+1}=x_n-y_n,\quad y_{n+1}=x_n+y_n \]
として定める.次の問に答えなさい.

(1)各自然数$n$に対して,${x_n}^2+{y_n}^2={2}^{n-1}$が成り立つことを示しなさい.
(2)各自然数$n$に対して,$x_{n+1}x_n+y_{n+1}y_n$および$x_{n+2}x_n+y_{n+2}y_n$の値を求めなさい.
(3)各自然数$n$に対して,$xy$平面上に点$\mathrm{P}_n(x_n,\ y_n)$をとる.このとき,$\angle \mathrm{P}_{n+1} \mathrm{OP}_n$と$\angle \mathrm{P}_{n+2} \mathrm{OP}_n$の大きさを求めなさい.ただし,点$\mathrm{O}$は$xy$平面の原点である.
(4)一般項$x_n,\ y_n$を各々求めなさい.
愛知県立大学 公立 愛知県立大学 2014年 第1問
$1$から$5$までの$5$つの自然数のうち,いずれかの$1$つの数字が確率的に表示される$3$つの装置$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.各装置$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$で数字$n (1 \leqq n \leqq 5)$が表示される確率をそれぞれ$P_{\mathrm{A}}(n)$,$P_{\mathrm{B}}(n)$,$P_{\mathrm{C}}(n)$とし,
\[ \sum_{n=1}^5 P_{\mathrm{A}}(n)=\sum_{n=1}^5 P_{\mathrm{B}}(n)=\sum_{n=1}^5 P_{\mathrm{C}}(n)=1 \]
が成り立っている.$a,\ b,\ c,\ k$を実数とし,$f(n)={2}^{{-(n-3)}^2}$とするとき,以下の問いに答えよ.

(1)$P_{\mathrm{A}}(n)=a \cdot f(n)$であるとき,装置$\mathrm{A}$で各数字が表示される確率と,表示される数字の期待値を求めよ.
(2)$P_{\mathrm{B}}(n)={2}^{-2n+5} \cdot b \cdot f(n)$であるとき,装置$\mathrm{B}$と$(1)$で確率を求めた装置$\mathrm{A}$の表示が,両方とも偶数である確率を求めよ.
(3)$P_{\mathrm{C}}(n)={2}^{-{n}^2+kn} \cdot c \cdot f(n)$であり,$(1)$の$P_{\mathrm{A}}(n)$が最大となるときの$n$を$m$とする.このとき,$P_{\mathrm{C}}(n)$が最大となる$n$と$m$が等しくなる$k$の範囲を求めよ.
愛知県立大学 公立 愛知県立大学 2014年 第3問
以下の問いに答えよ.

(1)定積分$\displaystyle \int_0^\pi \cos mx \cos nx \, dx$を求めよ.ただし,$m,\ n$は自然数とする.
(2)$a$と$b$を$a<b$を満たす実数とし,$f(x)$と$g(x)$を区間$[a,\ b]$で定義された連続な関数とする.また,
\[ \int_a^b \{f(x)\}^2 \, dx \neq 0,\quad \int_a^b \{g(x)\}^2 \, dx \neq 0 \]
であるとする.このとき,任意の実数$t$に対して
\[ \int_a^b \{tf(x)+g(x)\}^2 \, dx \geqq 0 \]
が成り立つことを用いて,次の不等式が成り立つことを示せ.
\[ \left\{ \int_a^b f(x)g(x) \, dx \right\}^2 \leqq \left( \int_a^b \{f(x)\}^2 \, dx \right) \left( \int_a^b \{g(x)\}^2 \, dx \right) \]
また,等号が成り立つ条件は,$k$を定数として$g(x)=kf(x)$と表せるときであることを示せ.
(3)$f(x)$は区間$[-\pi,\ \pi]$で定義された連続な関数で$\displaystyle \int_{-\pi}^\pi \{f(x)\}^2 \, dx=1$を満たす.このとき,
\[ I=\int_{-\pi}^\pi f(x) \cos 2x \, dx \]
を最大とする$f(x)$とそのときの$I$の値を求めよ.
宮城大学 公立 宮城大学 2014年 第2問
次の空欄$[ア]$から$[ク]$にあてはまる数や式を書きなさい.

初項$2$,公差$3$の等差数列$\{a_n\}$と,初項$1$,公差$4$の等差数列$\{b_n\}$がある.このとき,それぞれの一般項を$n$を用いて表せば,
\[ a_n=[ア],\quad b_n=[イ] \]
である.
また,数列$\{a_n\}$と数列$\{b_n\}$に共通に含まれる項を順に並べると,次のような数列$\{c_n\}$が得られる.
\[ c_1=5,\quad c_2=[ウ],\quad c_3=[エ],\quad \cdots \]
したがって,数列$\{c_n\}$の一般項を$n$を用いて表せば,
\[ c_n=[オ] \]
となる.
また,数列$\{c_n\}$の第$p$項を$c_p$とするとき,数列$\{a_n\}$と数列$\{b_n\}$はともに項$c_p$を含む.よってそれぞれの項番号を自然数$p$を用いて表せば,数列$\{a_n\}$の場合は,
\[ n=[カ] \]
であり,数列$\{b_n\}$の場合は,
\[ n=[キ] \]
となる.よって,これらの項番号の差の絶対値を自然数$p$を用いて表せば,$[ク]$となる.
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。