タグ「自然数」の検索結果

50ページ目:全1172問中491問~500問を表示)
杏林大学 私立 杏林大学 2014年 第1問
$[シ]$の解答は解答群の中から最も適当なものを$1$つ選べ.

$n$を$100$以下の自然数とし,$n$の約数の個数を$f(n)$,空集合を$\phi$とする.

(1)$f(48)=[アイ]$であり,$f(n)=9$を満たす最小の自然数は$n=[ウエ]$である.$f(n)=5$を満たす$n$の個数は$[オ]$個であり,$f(n)=6$を満たす$n$の個数は$[カキ]$個である.
(2)$f(n)$の最大値は$[クケ]$である.したがって,$f(f(n))>4$を満たす最小の自然数は$n=[コサ]$となる.
(3)$f(n)=2$を満たす$100$以下の自然数$n$の集合を$A$,$100$以下の素数の集合を$B$とすると,$[シ]$が成り立つ.

$[シ]$の解答群
\mon[$①$] $A \in B$
\mon[$②$] $B \in A$
\mon[$③$] $A=B$
\mon[$④$] $A \subset B$かつ$A \neq B$
\mon[$⑤$] $B \subset A$かつ$A \neq B$
\mon[$⑥$] $A \cap B=\phi$
\mon[$④chi$] $A \cap B \neq \phi$かつ$A \neq A \cup B \neq B$
成城大学 私立 成城大学 2014年 第3問
$(1+\sqrt{2})^n=a_n+b_n \sqrt{2}$($n$は自然数)を満たす整数の数列$\{a_n\}$,$\{b_n\}$を考える.

(1)$a_{n+1}$,$b_{n+1}$のそれぞれを$a_n$と$b_n$で表す漸化式を作れ.
(2)漸化式$a_{n+1}+pb_{n+1}=q(a_n+pb_n)$を満たす実数の組$(p,\ q)$を$2$組求めよ.
(3)$(2)$で求めた$2$つの漸化式を解いて,一般項$a_n,\ b_n$を求めよ.
成城大学 私立 成城大学 2014年 第2問
$n$を自然数とする.

(1)次の和を求めよ.
\[ 1+3+5+\cdots +(2n-1) \]
(2)自然数$k$に対して$S_k=1+2+\cdots +k$とおくとき,
\[ S_1-S_2+S_3-S_4+\cdots +S_{2n-1} \]
を求めよ.
成城大学 私立 成城大学 2014年 第3問
図のように,$1$から$9$までの異なる自然数の書かれたボタンを$3$行$3$列に並べる.
(図は省略)

(1)ボタンの並べ方は,全部で何通りあるか.
(2)縦一列の$3$つのボタンの数字の和が,すべて奇数となる並べ方は何通りあるか.
(3)縦一列の$3$つのボタンの数字の和が,すべて$3$の倍数となる並べ方は何通りあるか.
星薬科大学 私立 星薬科大学 2014年 第2問
$3$桁の自然数を全体集合として次の問に答えよ.

(1)$7$で割り切れない$3$桁の自然数は$[$10$][$11$][$12$]$個ある.
(2)$3$でも$5$でも割り切れない$3$桁の自然数は$[$13$][$14$][$15$]$個ある.
(3)$3$でも$5$でも$7$でも割り切れない$3$桁の自然数は$[$16$][$17$][$18$]$個ある.
(4)$3$で割り切れて,$7$で割り切れない$3$桁の自然数は$[$19$][$20$][$21$]$個ある.
東京女子大学 私立 東京女子大学 2014年 第4問
$m$を自然数とするとき,以下を証明せよ.

(1)$m^3-m$はつねに$6$で割り切れる.
(2)$m^3-m$が$4$で割り切れるための必要十分条件は,$m$を$4$で割った余りが$2$でないことである.
上智大学 私立 上智大学 2014年 第1問
次の問いに答えよ.

(1)関数$f(x)$を
\[ f(x)=\int_0^1 |(x-1)(x-t)| \, dt \]
とする.
$x \leqq [ア]$,$x \geqq [イ]$のとき,
\[ f(x)=[ウ]x^2+\frac{[エ]}{[オ]}x+\frac{[カ]}{[キ]} \]
$[ア]<x<[イ]$のとき,
\[ f(x)=[ク]x^3+[ケ]x^2+\frac{[コ]}{[サ]}x+\frac{[シ]}{[ス]} \]
である.また,関数$f(x)$は$x=[セ]$のとき,最小値$[ソ]$をとる.
(2)自然数$m,\ n$が
\[ \frac{1}{m}+\frac{1}{n}<\frac{1}{3} \]
を満たすとき,$\displaystyle \frac{1}{m}+\frac{1}{n}$の最大値は$\displaystyle \frac{[タ]}{[チ]}$である.
武庫川女子大学 私立 武庫川女子大学 2014年 第1問
次の空欄$[$1$]$~$[$24$]$にあてはまる数字を記入せよ.ただし,空欄$[$21$]$には,$+$または$-$の記号が入る.

(1)$a_1=m$(ただし,$m>0$),$a_{n+1}-a_n=-4$(ただし,$n$は自然数)で定められる数列$\{a_n\}$がある.
$a_n=m-[$1$](n-[$2$])$であり,
$S_n=\sum_{k=1}^n a_k$とすると,$n$が$\displaystyle \frac{m+[$3$]}{[$4$]}$に最も近い整数であるとき,$S_n$は最大値をとる.
したがって,ある$m$の値について,$S_n$が,$n=10$で最大となるとき,とり得る$m$の値の範囲は$[$5$][$6$] \leqq m \leqq [$7$][$8$]$であり,$m=[$7$][$8$]$のとき,$S_{10}=[$9$][$10$][$11$]$である.
(2)$\angle \mathrm{AOB}$を直角とする直角三角形$\mathrm{OAB}$がある.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.線分$\mathrm{AB}$を$3:1$に内分する点を$\mathrm{P}$とし,$3:1$に外分する点を$\mathrm{Q}$とし,$\mathrm{BP}=1$とする.

(i) $\displaystyle \overrightarrow{\mathrm{OP}}=\frac{[$12$]}{[$13$]} \overrightarrow{a}+\frac{[$14$]}{[$13$]} \overrightarrow{b}$,$\displaystyle \overrightarrow{\mathrm{OQ}}=-\frac{[$15$]}{[$16$]} \overrightarrow{a}+\frac{[$17$]}{[$16$]} \overrightarrow{b}$であり,
$|\overrightarrow{\mathrm{OQ}}|=[$18$]|\overrightarrow{\mathrm{OP}}|$である.
(ii) $\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{AB}}=0$であるとき,$|\overrightarrow{b}|=[$19$]$であり,$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OQ}}=[$20$]$である.
(iii) $\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{AB}}=0$であるとき,$\overrightarrow{\mathrm{OR}}=2 \overrightarrow{b}$,$\overrightarrow{\mathrm{OR}}$と$\overrightarrow{\mathrm{RA}}$のなす角を$\theta$とすると,
$\displaystyle \cos \theta=[$21$] \frac{[$22$] \sqrt{[$23$]}}{[$24$]}$である.
上智大学 私立 上智大学 2014年 第1問
次の$[あ]$~$[お]$に当てはまるものを,下の選択肢から選べ.

(1)$\displaystyle x=-\frac{2}{3}$は$3x^2-13x-10=0$であるための$[あ]$
(2)$n$を自然数とする.$n^2$が$5$の倍数であることは,$n$が$5$の倍数であるための$[い]$
(3)$a,\ b$を自然数とする.$(a+b)^2$が奇数であることは,$ab$が偶数であるための$[う]$
(4)平面上の異なる$2$つの円$C$,$C^\prime$の半径をそれぞれ$r$,$r^\prime$とし,中心間の距離を$d$とする.ただし,$r<r^\prime$とする.このとき,$C$と$C^\prime$が共有点をもたないことは,$d>r+r^\prime$であるための$[え]$
(5)$\mathrm{AB}=8$,$\mathrm{BC}=5$,$\mathrm{CA}=7$の$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$の延長上に$\mathrm{CD}=4$となる点$\mathrm{D}$をとり,辺$\mathrm{AC}$上に$\mathrm{AE}=3$となる点$\mathrm{E}$をとる.このとき,辺$\mathrm{AB}$上の点$\mathrm{F}$に対して,$\mathrm{AF}=3$であることは,$3$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$が一直線上にあるための$[お]$
選択肢:

\mon[$①$] 必要条件であるが十分条件ではない.
\mon[$②$] 十分条件であるが必要条件ではない.
\mon[$③$] 必要十分条件である.
\mon[$④$] 必要条件でも十分条件でもない.
東京理科大学 私立 東京理科大学 2014年 第1問
白,赤,黄,緑の$4$色に光るライトがある.はじめ,ライトの色は白であり,$1$分経過するごとに,次のルールでライトの色が変わるものとする.ただし,ライトの色が白のときについては$n=0,\ 1,\ 2,\ \cdots$,それ以外の色のときについては$n=1,\ 2,\ \cdots$とする.

(i) $n$分後に白のとき,$n+1$分後ではそれぞれ$\displaystyle \frac{1}{3}$の確率で赤,黄,緑になる.
(ii) $n$分後に赤のとき,$n+1$分後ではそれぞれ$\displaystyle \frac{1}{3}$の確率で白,黄,緑になる.
(iii) $n$分後に黄のとき,$n+1$分後ではそれぞれ$\displaystyle \frac{1}{3}$の確率で白,赤,緑になる.
\mon[$\tokeishi$] $n$分後に緑のとき,$n+1$分後ではそれぞれ$\displaystyle \frac{1}{3}$の確率で白,赤,黄になる.

$n$を自然数とし,$n$分後にライトの色が白である確率を$P_n$,また,$n$分後にライトの色が赤である確率を$Q_n$とする.

(1)$\displaystyle P_2=\frac{[ア]}{[イ]},\ Q_2=\frac{[ウ]}{[エ]}$である.

(2)$P_n$および$Q_n$についての漸化式を利用すると,自然数$n$に対して,$n$が$3$以上のとき,


$\displaystyle P_n=\frac{[オ]}{[カ]} \left( [キ]-{\left( -\frac{[ク]}{[ケ]} \right)}^{n-1} \right)$

$\displaystyle Q_n=\frac{[コ]}{[サ]} \left( [シ]+\frac{[ス]}{[セ]} {\left( -\frac{[ソ]}{[タ]} \right)}^{n-1} \right)$


である.
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。