タグ「自然数」の検索結果

37ページ目:全1172問中361問~370問を表示)
静岡大学 国立 静岡大学 2014年 第4問
$\alpha$を実数とする.$2$つの関数$f(x)=e^{-x}(\sin x-\cos x)$と$g(x)=\alpha e^{-x}$について,次の問いに答えよ.

(1)$\displaystyle \int f(x) \, dx=-e^{-x} \sin x+C$であることを示せ.ただし,$C$は積分定数である.
(2)すべての$x \geqq 0$について$f(x) \leqq g(x)$が成り立つような$\alpha$の値の最小値を求めよ.
(3)$\alpha$を$(2)$で求めた最小値とする.曲線$y=f(x) (x \geqq 0)$と曲線$y=g(x) (x \geqq 0)$との共有点の$x$座標を小さい方から順に$a_0,\ a_1,\ a_2,\ \cdots$とし,$n$が自然数であるとき,
\[ S_n=\int_{a_{n-1}}^{a_n} \left\{ g(x)-\frac{|f(x)|+f(x)}{2} \right\} \, dx \]
とする.このとき,$S_n$を求めよ.
(4)$(3)$で求めた$S_n$について,無限級数$\displaystyle \sum_{n=1}^\infty S_n$の和を求めよ.
静岡大学 国立 静岡大学 2014年 第2問
$n$を$3$以上の自然数とし,$k$を$4$以上の自然数とする.$1$から$n$までの番号の札が$1$枚ずつ計$n$枚ある.この中から$1$枚の札を引き,番号を記録してからもとに戻す操作をする.この試行を$k$回くり返す.$i$回目($1 \leqq i \leqq k$)に引いた札の番号を$X_i$とするとき,次の問いに答えよ.

(1)$X_1,\ X_2,\ \cdots,\ X_k$がすべて異なる番号である確率を求めよ.
(2)$X_1,\ X_2,\ \cdots,\ X_k$のうち,ちょうど$k-1$個が同じ番号である確率を求めよ.
(3)自然数$l$が$2 \leqq l \leqq k-2$を満たすとき,$X_1,\ X_2,\ \cdots,\ X_k$のうち,ちょうど$l$個が同じ番号で,残りの$k-l$個がすべて異なる番号である確率を求めよ.
静岡大学 国立 静岡大学 2014年 第4問
$p$を$\displaystyle 0<p<\frac{1}{6}$を満たす実数とする.次のように数列$\{a_n\}$を帰納的に定義する.$a_1=0$とし,第$n$項$a_n$を用いた関数
\[ f_n(x)=2x^3-3px^2+6a_nx-1 \]
が極大値と極小値をもつならば,第$n+1$項$a_{n+1}$を$f_n(x)$の極大値と極小値の和により定める.そうでないならば,$a_{n+1}=0$と定める.このとき,次の問いに答えよ.

(1)$f_1(x)$が極大値と極小値をもつことを示し,$a_2$を$p$を用いて表せ.
(2)$k$を自然数とする.関数$f_k(x)$が極大値と極小値をもつならば,関数$f_{k+1}(x)$も極大値と極小値をもつことを示せ.
(3)$a_{n+1}$と$a_n$の関係式を$p$を用いて表せ.
(4)一般項$a_n$を$p$を用いて表せ.
北海道大学 国立 北海道大学 2014年 第3問
逆行列をもつ$2$次の正方行列,$A_1,\ A_2,\ A_3,\ \cdots$が,関係式
\[ A_{n+1}A_n=A_n+2E \quad (n=1,\ 2,\ 3,\ \cdots) \]
をみたすとする.さらに$A_1+E$は逆行列をもつとする.ここで$E$は$2$次の単位行列とする.

(1)すべての自然数$n$に対して$A_n+E$は逆行列をもち,
\[ (A_{n+1}+E)^{-1}=\frac{1}{2}A_n(A_n+E)^{-1} \]
が成立することを示せ.
(2)$B_n=(2E-A_n)(A_n+E)^{-1}$により,行列$B_n$を定める.$B_{n+1}$と$B_n$との間に成立する関係式を求め,$B_n$を$B_1$と$n$を用いて表せ.
千葉大学 国立 千葉大学 2014年 第6問
自然数$n$に対して,和
\[ S_n=1+\frac{1}{2}+\frac{1}{3}+\cdots +\frac{1}{n} \]
を考える.

(1)各自然数$n$に対して$2^k \leqq n$をみたす最大の整数$k$を$f(n)$で表すとき,$2$つの奇数$a_n,\ b_n$が存在して
\[ S_n=\frac{a_n}{2^{f(n)}b_n} \]
と表されることを示せ.
(2)$n \geqq 2$のとき$S_n$は整数にならないことを示せ.
(3)さらに,自然数$m,\ n (m<n)$に対して,和
\[ S_{m,n}=\frac{1}{m}+\frac{1}{m+1}+\cdots +\frac{1}{n} \]
を考える.$S_{m,n}$はどんな$m,\ n (m<n)$に対しても整数にならないことを示せ.
東北大学 国立 東北大学 2014年 第6問
以下の問いに答えよ.

(1)$n$を自然数,$a$を正の定数として,
\[ f(x)=(n+1) \{ \log (a+x)-\log (n+1) \}-n(\log a-\log n)-\log x \]
とおく.$x>0$における関数$f(x)$の極値を求めよ.ただし,対数は自然対数とする.
(2)$n$が$2$以上の自然数のとき,次の不等式が成り立つことを示せ.
\[ \frac{1}{n} \sum_{k=1}^n \frac{k+1}{k}>(n+1)^{\frac{1}{n}} \]
広島大学 国立 広島大学 2014年 第1問
$a,\ b$を実数,$a>0$として,行列$A=\left( \begin{array}{cc}
a & 2 \\
-2 & b
\end{array} \right)$の定める$1$次変換を$f$とする.$f$によって,点$\mathrm{P}(1,\ 0)$が点$\mathrm{P}_1$に移され,点$\mathrm{P}_1$が点$\mathrm{P}_2$に移されるものとする.$\mathrm{P}$が線分$\mathrm{P}_1 \mathrm{P}_2$の中点であるとき,次の問いに答えよ.

(1)$a,\ b$を求めよ.
(2)ある実数$c$に対して$c \overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{OP}}_1=(v_1,\ v_2)$とすると,
\[ A \left( \begin{array}{c}
v_1 \\
v_2
\end{array} \right)=\left( \begin{array}{c}
v_1 \\
v_2
\end{array} \right) \]
が成り立つ.$c$を求めよ.
(3)$\overrightarrow{\mathrm{PP}}_1=(w_1,\ w_2)$とする.すべての自然数$n$に対して
\[ A^n \left( \begin{array}{c}
w_1 \\
w_2
\end{array} \right)=(-2)^n \left( \begin{array}{c}
w_1 \\
w_2
\end{array} \right) \]
が成り立つことを,数学的帰納法によって証明せよ.
(4)$(2)$と$(3)$の$v_1,\ v_2,\ w_1,\ w_2$に対して,$\overrightarrow{\mathrm{OP}}=s(v_1,\ v_2)+t(w_1,\ w_2)$となる実数$s,\ t$を求め,$A^n \left( \begin{array}{c}
1 \\
0
\end{array} \right)$を$n$を用いて表せ.ただし,$n$は自然数である.
千葉大学 国立 千葉大学 2014年 第1問
袋の中に,赤玉が$3$個,白玉が$7$個が入っている.袋から玉を無作為に$1$つ取り出し,色を確認してから,再び袋に戻すという試行を行う.この試行を$N$回繰り返したときに,赤玉を$A$回(ただし$0 \leqq A \leqq N$)取り出す確率を$p(N,\ A)$とする.このとき,以下の問いに答えよ.

(1)確率$p(N,\ A)$を$N$と$A$を用いて表せ.
(2)$N$が$10$の倍数,すなわち$N=10n$となる自然数$n$があるとする.確率$p(10n,\ 0)$,$p(10n,\ 1)$,$\cdots$,$p(10n,\ 10n)$のうち,一番大きな値は$p(10n,\ 3n)$であることを次の手順により証明せよ.

(i) $0$以上の整数$a$,自然数$b$に対して,$\displaystyle \frac{b!}{a!} \leqq b^{b-a}$を示す.ただし$0!=1$とする.

(ii) $0$以上$10n$以下の整数$m$に対して,$\displaystyle \frac{p(10n,\ m)}{p(10n,\ 3n)} \leqq 1$を示す.
熊本大学 国立 熊本大学 2014年 第3問
以下の問いに答えよ.

(1)正の実数$a,\ b,\ c$について,不等式
\[ \frac{\log a}{a}+\frac{\log b}{b}+\frac{\log c}{c}<\log 4 \]
が成立することを示せ.ただし,$\log$は自然対数とし,必要なら$e>2.7$および$\log 2>0.6$を用いてもよい.
(2)自然数$a,\ b,\ c,\ d$の組で
\[ a^{bc} b^{ca} c^{ab}=d^{abc},\quad a \leqq b \leqq c,\quad d \geqq 3 \]
を満たすものをすべて求めよ.
熊本大学 国立 熊本大学 2014年 第3問
$r$を$r>1$である実数とし,数列$\{a_n\}$を次で定める.
\[ a_1=1,\quad a_{n+1}=\frac{a_n+r^2}{a_n+1} \]
以下の問いに答えよ.

(1)$n$が奇数のとき$a_n<r$,$n$が偶数のとき$a_n>r$であることを示せ.
(2)任意の自然数$n$について,$a_{n+2}-r$を$a_n$と$r$を用いて表せ.
(3)任意の自然数$n$について,次の不等式を示せ.
\[ \frac{a_{2n+2}-r}{a_{2n}-r}<\left( \frac{r-1}{r+1} \right)^2 \]
(4)$\displaystyle \lim_{n \to \infty}a_{2n}$および$\displaystyle \lim_{n \to \infty}a_{2n+1}$を求めよ.
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。