タグ「自然数」の検索結果

27ページ目:全1172問中261問~270問を表示)
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

数直線上の点の集合$S=\{-1,\ 0,\ 1\}$を考える.球が$2$個用意されており,$S$の各点上には,$2$個まで球を置くことができるとする.$S$内に置かれた球に対する次の操作$\mathrm{T}$を考える.
\begin{screen}
{\bf 操作$\mathrm{T}$}

\mon[$(\mathrm{T}1)$] $S$内に球が$1$個だけ置かれている場合は, その球に対して次の操作$\mathrm{A}$を行う.
\begin{screen}
{\bf 操作$\mathrm{A}$}

\mon[$(\mathrm{A}1)$] 球が点$0$上に置かれている場合はその球を確率$\displaystyle\frac{1}{3}$で$S$内から取り除き,確率$\displaystyle\frac{1}{3}$ずつで点$-1$または点$1$の上に移す.
\mon[$(\mathrm{A}2)$] 球が点$-1$または点$1$の上に置かれている場合はその球を必ず点$0$の上に移す.

\end{screen}
\mon[$(\mathrm{T}2)$] $S$内に球が$2$個置かれている場合は,どちらか$1$個の球を等しい確率で選び,その選ばれた球に対して操作$\mathrm{A}$を行う.

\end{screen}
いま,球が$2$個とも点$0$上に置かれている状態から始め,操作$\mathrm{T}$を繰り返し行う.ただし,$S$内に球がなくなった場合は操作を行うのをやめる.以下,$n,\ m$を自然数とする.

(1)操作$\mathrm{T}$を$n$回繰り返し終えたとき,球が$2$個とも点$0$上に置かれている確率を$p_n$とし,点$-1$と点$0$の上に$1$個ずつ置かれているかまたは点$0$と点$1$の上に$1$個ずつ置かれている確率を$q_n$とする.

\mon[$(1$-$1)$] $n \geqq 2$に対し,$p_n=[あ]q_{n-1}$である.
\mon[$(1$-$2)$] $q_1=[い]$である.一般に$q_{2m}=0$であり,$q_{2m-1}$を$m$の式で表すと$q_{2m-1}=[う]$である.

(2)操作$\mathrm{T}$を$n$回繰り返し終えたとき,$S$内に球が$1$個だけあり,かつそれが点$0$上に置かれている確率を$r_n$,点$-1$または点$1$の上に置かれている確率を$s_n$とする.

\mon[$(2$-$1)$] $n \geqq 2$に対し,
\[ \begin{array}{l}
r_n=[え]s_{n-1}+[お]p_{n-1} \\
s_n=[か]r_{n-1}+[き]q_{n-1}
\end{array} \]
である.
\mon[$(2$-$2)$] 一般に$r_{2m}=0$であり,$r_{2m-1}$を$m$の式で表すと$r_{2m-1}=[く]$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
次の問いに答えよ.

(1)次の問いに答えよ.

(i) $f(x,\ y)=2x^2+11xy+12y^2-5y-2$を因数分解すると,
\[ \left(x+[$1$]y+[$2$] \right) \left([$3$]x+[$4$]y-[$5$] \right) \]
である.
(ii) $f(x,\ y)=56$を満たす自然数$x,\ y$の値は,$x=[$6$]$,$y=[$7$]$である.

(2)$xy$平面上の$2$直線$y=x+4 \sin \theta+1$,$y=-x+4 \cos \theta-3$の交点を$\mathrm{P}$とおく.ただし,$\theta$は実数とする.

(i) $\displaystyle \theta=\frac{\pi}{12}$のとき,点$\mathrm{P}$の座標は$\displaystyle \left( \sqrt{[$8$]}-[$9$],\ \sqrt{[$10$]}-[$11$] \right)$である.
(ii) $\theta$が実数全体を動くとき,点$\mathrm{P}$の軌跡は
\[ x^2+y^2+[$12$]x+[$13$]y-[$14$]=0 \]
である.

(3)$2$次関数$f(x)$は,すべての実数$x$について
\[ \int_0^x f(t) \, dt=xf(x)-\frac{4}{3}x^3+ax^2 \]
を満たす.ただし,$a$は実数である.また,$f(0)=a^2-a-6$である.このとき,

(i) $f(x)=[$15$]x^2-[$16$]ax+\left( a+[$17$] \right) \left( a-[$18$] \right)$である.
(ii) 方程式$f(x)=0$が少なくとも$1$つの正の実数解をもつような$a$の値の範囲は
\[ [$19$][$20$]<a \leqq [$21$]+\sqrt{[$22$][$23$]} \]
である.

(4)$\{a_n\}$は,数字の$1$と$2$だけで作ることのできる自然数を小さい順に並べた数列である.
\[ \{a_n\} : \ 1,\ 2,\ 11,\ 12,\ 21,\ 22,\ 111,\ \cdots \]
このとき,

(i) $a_{10}=[$24$][$25$][$26$]$,$a_{15}=\kakkofour{$27$}{$28$}{$29$}{$30$}$である.
(ii) $\displaystyle \sum_{k=7}^{14} a_k=\kakkofour{$31$}{$32$}{$33$}{$34$}$である.
(iii) $\{a_n\}$のうち,$m$桁である項の総和は$\displaystyle \frac{{[$35$]}^{m-1} \left\{ \left([$36$][$37$] \right)^m-[$38$] \right\}}{[$39$]}$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
ボタンを$1$回押すたびに$1,\ 2,\ 3,\ 4,\ 5,\ 6$のいずれかの数字が$1$つ画面に表示される機械がある.このうちの$1$つの数字$Q$が表示される確率は$\displaystyle \frac{1}{k}$であり,$Q$以外の数字が表示される確率はいずれも等しいとする.ただし,$k$は$k>6$を満たす自然数とする.

ボタンを$1$回押して表示された数字を確認する試行を繰り返すとき,$1$回目に$4$の数字,$2$回目に$5$の数字が表示される確率は,$1$回目に$5$の数字,$2$回目に$6$の数字が表示される確率の$\displaystyle \frac{8}{5}$倍である.このとき,

(1)$Q$は$[$59$]$であり,$k$は$[$60$]$である.
(2)この試行を$3$回繰り返すとき,表示された$3$つの数字の和が$16$となる確率は
\[ \frac{[$61$][$62$][$63$]}{\kakkofour{$64$}{$65$}{$66$}{$67$}} \]
である.
(3)この試行を$500$回繰り返すとき,そのうち$Q$の数字が$n$回表示される確率を$P_n$とおくと,$P_n$の値が最も大きくなる$n$の値は$[$68$][$69$]$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
$c$を定数とし,数列$\{a_n\}$を
\[ a_n=\frac{c+\sum_{k=1}^n 2^k}{2^n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.

(1)数列$\{a_n\}$は漸化式
\[ a_{n+1}=[$1$]+\frac{a_n}{[$2$]} \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たす.
(2)$a_n$を$n$の式で表すと
\[ a_n=2-\frac{[$3$]-c}{2^n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
となる.ゆえに,$c=[$4$]$のとき数列$\{a_n\}$は公比$1$の等比数列になる.
(3)$c=1$とする.$a_n$が$1.99$を超えない最大の$n$は$[$5$]$である.
(4)$c=-38$とする.自然数$N$に対して,$\displaystyle \sum_{n=1}^N a_n$の値は$N=[$6$]$のとき最小値$\displaystyle \frac{[$7$][$8$][$9$]}{[$10$]}$をとる.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$p,\ q$を正の実数として,曲線$C$を$\displaystyle x^{\frac{1}{p}}+y^{\frac{1}{q}}=1 (0 \leqq x \leqq 1,\ 0 \leqq y \leqq 1)$により定義する.

(1)曲線$C$の方程式を$y$について解いて得られる関数を$y=f(x) (0 \leqq x \leqq 1)$とおく.$y=f(x)$のグラフが$0<x<1$において変曲点をもつためには$p,\ q$が条件$[あ]$を満たすことが必要十分である.
(2)曲線$C$と$x$軸,$y$軸で囲まれた図形の面積を$S(p,\ q)$とすると,$S(1,\ q)=[い]$であり,$p>1$ならば$S(p,\ q)$と$S(p-1,\ q+1)$の間には$S(p,\ q)=[う]S(p-1,\ q+1)$の関係がある.$p,\ q$がともに自然数であるときに$S(p,\ q)$を$p,\ q$の式で表すと$S(p,\ q)=[え]$である.
(3)$p=q=3$のとき,直線$\ell:x+y=\alpha$が曲線$C$と$2$点を共有するための必要十分条件は$[お]<\alpha \leqq 1$である.この条件が成り立つとき,直線$\ell$と曲線$C$の交点$\mathrm{P}$,$\mathrm{Q}$の$x$座標を$x_1,\ x_2$とすると$\displaystyle x_1^{\frac{1}{3}}x_2^{\frac{1}{3}}=[か]$かつ$\displaystyle \left( x_1^{\frac{1}{3}}-x_2^{\frac{1}{3}} \right)^2=[き]$である.さらに$\alpha_0=[お]$とおくとき$\displaystyle \lim_{\alpha \to \alpha_0+0} \frac{\mathrm{PQ}^2}{\alpha-\alpha_0}=[く]$が成り立つ.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.また$(1)$,$(3)$に答えなさい.

以下,数列$\{a_n\}$が「長さ有限」とは,ある番号から先のすべての$n$に対して$a_n=0$となることをいう.ただし,$a_n$はすべて実数とする.また,数列$\{a_n\}$を一つの文字で表すときは$A=\{a_n\}$あるいは$A=(a_1,\ a_2,\ \cdots)$のように書く.数列$A=\{a_n\}$が長さ有限のとき,$a_n \neq 0$となるような自然数$n$の最大値を数列$A$の「長さ」と呼ぶ.ただし,すべての$n$に対して$a_n=0$である数列の長さは$0$とする.
数列$A=\{a_n\}$,$B=\{b_n\}$,および実数$c$に対して
\[ A+B=\{a_n+b_n\},\quad cA=\{ca_n\} \]
により新しい数列$A+B$および$cA$を定義する.また,$A$,$B$がともに長さ有限のときに限って$A$と$B$との「内積」$A \cdot B$および「距離」$\overline{AB}$をそれぞれ
\[ A \cdot B=\sum_{n=1}^\infty a_nb_n,\quad \overline{AB}=\sqrt{\sum_{n=1}^\infty (a_n-b_n)^2} \]
により定める.$\displaystyle \left( \sum_{n=1}^\infty \text{は実際には有限個の数の和である.} \right)$
さて,
\[ A(0)=(0,\ 0,\ 0,\ \cdots),\quad A(1)=(1,\ 0,\ 0,\ \cdots) \]
であるとし,さらに$s=2,\ 3,\ \cdots$に対して長さ$s$の数列
\[ A(s)=(a(s)_1,\ a(s)_2,\ \cdots,\ a(s)_s,\ 0,\ 0,\ \cdots) \]
が定まっていて$a(s)_n>0 (n=1,\ 2,\ \cdots,\ s)$かつ
\[ \overline{A(s)A(t)}=1 \quad (s \neq t \text{かつ}s,\ t=0,\ 1,\ 2,\ \cdots) \]
が成り立っているとする.

(1)$s \geqq 1$ならば$A(s) \cdot A(s)=1$であり,また,$t>s \geqq 1$ならば$\displaystyle A(s) \cdot A(t)=\frac{1}{2}$であることを示しなさい.ただし,$A(s)=\{a_n\}$,$A(t)=\{b_n\}$とおきなさい.
(2)$A(2),\ A(3)$を求めると
$A(2)=\left( [あ],\ [い],\ 0,\ 0,\ \cdots \right)$,
$A(3)=\left( [う],\ [え],\ [お],\ 0,\ 0,\ \cdots \right)$
である.
(3)$t>s \geqq 2$ならば数列$A(t)$と数列$A(s)$の初めの$s-1$項はすべて一致することを示しなさい.ただし,数列$A(s)$の初めの$s$項を$a_1,\ a_2,\ \cdots,\ a_s$,数列$A(t)$の初めの$t$項を$b_1,\ b_2,\ \cdots,\ b_t$とおき,また,$s$と$t$以外のすべての$i \geqq 1$について数列$A(i)$の初めの$i$項を$c(i)_1,\ c(i)_2,\ \cdots,\ c(i)_i$とおきなさい.
(4)$t=1,\ 2,\ \cdots$に対して長さ$t$の数列$B(t)$を
\[ B(t)=\frac{1}{t+1} \left\{ A(1)+A(2)+\cdots +A(t) \right\}=\frac{1}{t+1} \sum_{i=1}^t A(i) \]
により定めると,$s=1,\ 2,\ \cdots,\ t$に対して$A(s) \cdot B(t)=[か]$である.
(5)$(3)$で示されたことから,$2$つの数列$\{x_n\}$,$\{y_n\}$が定まって,すべての$s \geqq 2$に対して$A(s)$は
\[ A(s)=(x_1,\ x_2,\ \cdots,\ x_{s-1},\ y_s,\ 0,\ 0,\ \cdots) \]
と表される.$\displaystyle \frac{y_s}{x_s}$を$s$の式で表すと$\displaystyle \frac{y_s}{x_s}=[き]$である.また,$x_s$を$s$の式で表すと$x_s=[く]$となる.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
$n$を自然数とする.表と裏が$\displaystyle\frac{1}{2}$の確率で出現するコインを$n$回繰り返し投げる試行をおこなう.各試行に対して$n$個の数$X_1,\ \cdots,\ X_n$をつぎのように定義する.
\[ X_i=\left\{ \begin{array}{ll}
X_{i-1}+1 & (i \text{回目の結果が表の場合}) \\
X_{i-1}+2 & (i \text{回目の結果が裏の場合})
\end{array} \right. \]
ただし$X_0=0$とする.$X_1,\ X_2,\ \cdots,\ X_n$のいずれかが値$k (1 \leqq k \leqq 2n)$と等しくなる確率を$P(n,\ k)$と記す.例えば,$n=1$ならば$\displaystyle P(1,\ 1)=\frac{1}{2}$,$\displaystyle P(1,\ 2)=\frac{1}{2}$となる.$n=2$ならば$\displaystyle P(2,\ 1)=\frac{1}{2}$,$\displaystyle P(2,\ 4)=\frac{[$1$]}{[$2$]}$となる.

$3 \leqq k \leqq n$とする.$X_i=k$となるのは,$X_{i-1}=k-1$で$i$回目の結果が表となるか,あるいは$X_{i-1}=k-2$で$i$回目の結果が裏となるかのいずれかの場合である.したがって
\[ P(n,\ k)=\frac{[$3$]}{[$4$]}P(n,\ k-1)+\frac{[$5$]}{[$6$]}P(n,\ k-2) \quad (3 \leqq k \leqq n) \]
が成り立つ.
いまコインを$10$回投げる試行を考える.このとき
\[ P(10,\ 2)=\frac{[$7$]}{[$8$]},\quad P(10,\ 5)=\frac{[$9$][$10$]}{[$11$][$12$]} \]
である.
立教大学 私立 立教大学 2015年 第1問
次の空欄$[ア]$~$[コ]$に当てはまる数または式を記入せよ.

(1)$2$つの自然数$p,\ q$が$p^2+pq+q^2=19$を満たすとき,$p+q=[ア]$である.
(2)$0 \leqq \theta<2\pi$のとき,$\sin^2 \theta+\cos \theta-1$の最大値は$[イ]$であり,最小値は$[ウ]$である.
(3)$\displaystyle S=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+\cdots +\frac{1}{\sqrt{45}+\sqrt{49}}$とすると,$S$の値は$[エ]$である.
(4)方程式$\log_{\sqrt{2}}(2-x)+\log_2 (x+1)=1$の解をすべて求めると,$x=[オ]$である.
(5)等式$\displaystyle f(x)=x^2+3 \int_0^1 f(t) \, dt$を満たす関数は,$f(x)=[カ]$である.
(6)座標空間における$4$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 3)$,$\mathrm{D}(x,\ 4,\ 5)$が同一平面上にあるとき,$x=[キ]$である.
(7)$3$次方程式$x^3-x^2+ax+b=0$の解の$1$つが$1+i$のとき,$a=[ク]$,$b=[ケ]$である.ただし,$a,\ b$は実数とし,$i$は虚数単位とする.
(8)三角形$\mathrm{ABC}$の辺の長さが$\mathrm{AB}=4$,$\mathrm{BC}=5$,$\mathrm{CA}=6$のとき,三角形$\mathrm{ABC}$の面積は$[コ]$である.
立教大学 私立 立教大学 2015年 第2問
$4$で割って$3$余る自然数を図のように並べ,上から$1$段目,$2$段目,$3$段目,$\cdots$とする.このとき,次の問に答えよ.

$1$段目 \qquad\qquad\,\! $7$

$2$段目 \qquad\quad $11 \quad 15$

$3$段目 \qquad $19 \ \; 23 \ \; 27$

$4$段目 \quad $31 \quad 35 \quad 39 \quad 43$

\quad : \qquad\,$\cdots\cdots\cdots\cdots\cdots\cdots$


(1)$6$段目の左から$4$個目にある自然数を求めよ.
(2)$n$段目の左端の自然数を$a_n$とする.$a_n$を$n$の式で表せ.
(3)$2015$は何段目の左から何個目にあるか答えよ.
(4)$n$段目に並んでいる自然数の総和を$S_n$とする.$S_n$を$n$の式で表せ.
東京理科大学 私立 東京理科大学 2015年 第1問
$m,\ n$を自然数とし,$m \geqq n$とする.$n$個の自然数の列で和が$m$となるようなものの場合の数を$f(m,\ n)$とする.例えば,$m=4$,$n=2$のときを考えてみると,和が$4$となる$2$つの自然数は$1,\ 3$と$2,\ 2$のみだから,和が$4$となる自然数の列は$1,\ 3$と$3,\ 1$と$2,\ 2$の$3$通りである.したがって,$f(4,\ 2)=3$である.このとき,以下の各値を求めよ.

(1)$f(7,\ 3)=[ア][イ]$
(2)$f(19,\ 4)=[ウ][エ][オ]$
(3)$\displaystyle \sum_{k=1}^{11} f(12,\ k)=\kakkofour{カ}{キ}{ク}{ケ}$
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。