タグ「自然数」の検索結果

19ページ目:全1172問中181問~190問を表示)
新潟大学 国立 新潟大学 2015年 第4問
数列$\{a_n\}$を次の条件$(ⅰ)$および$(ⅱ)$をみたすように定める.

(i) $a_1=0$,$a_2=3$
(ii) $3$以上の自然数$n$に対して,第$(n-1)$項$a_{n-1}$の値が初項$a_1$から第$(n-2)$項$a_{n-2}$までのどの項の値とも等しくないときは$a_n=a_{n-1}-1$であり,第$(n-1)$項$a_{n-1}$の値が初項$a_1$から第$(n-2)$項$a_{n-2}$までのどれかの項の値と等しいときは$a_n=a_{n-1}+6$である.

次の問いに答えよ.

(1)数列$\{a_n\}$の第$3$項から第$10$項までの各項の値を求めよ.
(2)数列$\{a_n\}$の第$2015$項の値を求めよ.
(3)数列$\{a_n\}$の初項から第$201$項までの和を求めよ.
新潟大学 国立 新潟大学 2015年 第5問
自然数$n$に対して,関数$f_n(x)$を次のように定める.
\[ \begin{array}{ll}
f_1(x)=1-\displaystyle\frac{x^2}{2} \phantom{\frac{[ ]}{2}} & \\
f_n(x)=\int_0^x f_{n-1}(t) \, dt \phantom{\frac{[ ]}{2}} & (n \text{が偶数のとき}) \\
f_n(x)=1-\int_0^x f_{n-1}(t) \, dt \phantom{\frac{[ ]}{2}} & (n \text{が}3 \text{以上の奇数のとき})
\end{array} \]
次の問いに答えよ.ただし必要があれば,$0<x \leqq 1$のとき$\displaystyle x-\frac{x^3}{3!}<\sin x<x$が成り立つことを用いてよい.

(1)関数$f_2(x),\ f_3(x)$を求めよ.
(2)$0 \leqq x \leqq 1$のとき,次の不等式が成り立つことを示せ.
\[ -\frac{x^4}{4!} \leqq f_1(x)-\cos x \leqq \frac{x^4}{4!} \]
(3)$0 \leqq x \leqq 1$のとき,次の不等式
\[ -\frac{x^{2m+2}}{(2m+2)!} \leqq f_{2m-1}(x)-\cos x \leqq \frac{x^{2m+2}}{(2m+2)!} \]
がすべての自然数$m$に対して成り立つことを示せ.
(4)極限値$\displaystyle \lim_{m \to \infty} f_{2m-1} \left( \frac{\pi}{6} \right)$を求めよ.
埼玉大学 国立 埼玉大学 2015年 第2問
$xy$平面上の点$\mathrm{P}$の$x$座標および$y$座標がともに整数であるとき,$\mathrm{P}$を格子点とよぶ.また,自然数$n$に対して,連立不等式
\[ \left\{ \begin{array}{l}
0 \leqq x \leqq n \\
0 \leqq y \leqq n
\end{array} \right. \]
の表す領域を$R$とする.$R$内の$4$つの格子点を頂点とする正方形の個数を$q_n$とする.次の問いに答えよ.

(1)$xy$平面上の$2$点$\mathrm{A}(a,\ 0)$,$\mathrm{B}(0,\ b) (a>0,\ b>0)$を結ぶ線分を$1$辺とする正方形$\mathrm{ABCD}$を考える.点$\mathrm{C}$,$\mathrm{D}$が第$1$象限に含まれるとき,$\mathrm{C}$,$\mathrm{D}$の座標を求めよ.
(2)$k$は自然数とする.$4$点$(0,\ 0)$,$(k,\ 0)$,$(k,\ k)$,$(0,\ k)$を頂点とする正方形を$E$とする.$E$の辺上の格子点($E$の頂点を含む)を$4$つの頂点とする正方形の個数を求めよ.
(3)$q_1,\ q_2,\ q_3$を求めよ.
(4)$q_n$を求めよ.
埼玉大学 国立 埼玉大学 2015年 第4問
$n$は$2$以上の自然数とし,
\[ f(\theta)=\frac{\cos^{n-1}\theta \sin^{n-1}\theta}{\cos^{2n}\theta+\sin^{2n}\theta} \]
とする.次の問いに答えよ.

(1)$t=\tan^n \theta$と変数変換することにより,$\displaystyle \int_0^{\frac{\pi}{4}} f(\theta) \, d\theta$を求めよ.
(2)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲で$f(\theta)$の最大値および最小値を求めよ.
静岡大学 国立 静岡大学 2015年 第1問
次の条件によって定められる数列$\{a_n\}$,$\{b_n\}$がある.

$\displaystyle a_1=\frac{1}{2},\quad 3a_{n+1}=a_n-2a_{n+1}a_n \quad (n=1,\ 2,\ 3,\ \cdots)$
$\displaystyle b_1=1,\quad b_{n+1}=b_n+\frac{n}{a_n} \quad (n=1,\ 2,\ 3,\ \cdots)$

このとき,次の問いに答えよ.ただし,すべての自然数$n$について$a_n>0$である.

(1)$\displaystyle c_n=\frac{1}{a_n}$とおくとき,$c_{n+1}$と$c_n$の関係式を求めよ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)数列$\{b_n\}$の一般項を求めよ.
埼玉大学 国立 埼玉大学 2015年 第2問
$xy$平面上の点$\mathrm{P}$の$x$座標および$y$座標がともに整数であるとき,$\mathrm{P}$を格子点とよぶ.また,自然数$n$に対して,連立不等式
\[ \left\{ \begin{array}{l}
0 \leqq x \leqq n \\
0 \leqq y \leqq n
\end{array} \right. \]
の表す領域を$R$とする.$R$内の$4$つの格子点を頂点とする正方形の個数を$q_n$とする.次の問いに答えよ.

(1)$xy$平面上の$2$点$\mathrm{A}(a,\ 0)$,$\mathrm{B}(0,\ b) (a>0,\ b>0)$を結ぶ線分を$1$辺とする正方形$\mathrm{ABCD}$を考える.点$\mathrm{C}$,$\mathrm{D}$が第$1$象限に含まれるとき,$\mathrm{C}$,$\mathrm{D}$の座標を求めよ.
(2)$k$は自然数とする.$4$点$(0,\ 0)$,$(k,\ 0)$,$(k,\ k)$,$(0,\ k)$を頂点とする正方形を$E$とする.$E$の辺上の格子点($E$の頂点を含む)を$4$つの頂点とする正方形の個数を求めよ.
(3)$q_1,\ q_2,\ q_3$を求めよ.
(4)$q_n$を求めよ.
香川大学 国立 香川大学 2015年 第3問
数列$\{a_n\}$は,
\[ a_1=2,\quad a_{n+1}=\frac{2a_n+2}{a_n+2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定められているとする.このとき,次の問に答えよ.

(1)$n$が自然数のとき,数学的帰納法を用いて$\sqrt{2}<a_n$を示せ.
(2)$n$が自然数のとき,$a_{n+1}<a_n$を示せ.
(3)$n$が自然数のとき,数学的帰納法を用いて
\[ a_n-\sqrt{2} \leqq \frac{(2-\sqrt{2})^n}{3^{n-1}} \]
を示せ.
香川大学 国立 香川大学 2015年 第3問
$2$次関数$y=f(x)$のグラフは,点$\displaystyle \left( \frac{3}{2}a, -a \right)$を頂点とし,点$(a,\ 0)$を通る放物線である.ただし,$a \neq 0$とする.このとき,次の問に答えよ.

(1)$2$次関数$y=f(x)$を$a$を用いて表せ.
(2)$a>0$とするとき,放物線$y=f(x)$と$x$軸で囲まれた部分の面積$S(a)$を,積分を計算することによって求めよ.
(3)$S(2^n)>7^{10}$となる最小の自然数$n$を求めよ.必要であれば,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$,$\log_{10}7=0.8451$を用いてもよい.
香川大学 国立 香川大学 2015年 第3問
数列$\{a_n\}$は,
\[ a_1=2,\quad a_{n+1}=\frac{2a_n+2}{a_n+2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定められているとする.このとき,次の問に答えよ.

(1)$n$が自然数のとき,数学的帰納法を用いて$\sqrt{2}<a_n$を示せ.
(2)$n$が自然数のとき,$a_{n+1}<a_n$を示せ.
(3)$n$が自然数のとき,数学的帰納法を用いて
\[ a_n-\sqrt{2} \leqq \frac{(2-\sqrt{2})^n}{3^{n-1}} \]
を示せ.
香川大学 国立 香川大学 2015年 第4問
$2$次関数$y=f(x)$のグラフは,点$\displaystyle \left( \frac{3}{2}a, -a \right)$を頂点とし,点$(a,\ 0)$を通る放物線である.ただし,$a \neq 0$とする.このとき,次の問に答えよ.

(1)$2$次関数$y=f(x)$を$a$を用いて表せ.
(2)$a>0$とするとき,放物線$y=f(x)$と$x$軸で囲まれた部分の面積$S(a)$を,積分を計算することによって求めよ.
(3)$S(2^n)>7^{10}$となる最小の自然数$n$を求めよ.必要であれば,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$,$\log_{10}7=0.8451$を用いてもよい.
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。